京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
上篇文章利用泰坦尼克号沉船事件中乘客的存活情况介绍了描述性数据分析,计算了不同舱位乘客的幸存率,今天我们来看看如何用图像来直观表达。
我们先来简单复习一下titanic.csv的内容。
# 导入数据
titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE)
names(titanic) # 查看titanic中的变量名
head(titanic) # 查看titanic前6行
上篇文章计算的不同舱位乘客的死亡与幸存人数如下:
table(titanic$survived,titanic$pclass)
1st 2nd 3rd
died 123 158 528
survived 200 119 181
不同舱位生存率:
survpct=paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") survpct [1] "61.92%" "42.96%" "25.53%"
如果我们想直观地描述不同舱位乘客的幸存率,可以用下面的做法:
绘制柱状图
barplot(table(titanic$survived,titanic$pclass))
barplot()是绘制柱状图的函数,该函数括号中的命令为绘图所需的数据,就是前面我们计算过的不同舱位死亡及幸存者人数。
柱状图的颜色也可调整,下面的代码中,col是更改柱状图颜色的命令:
barplot(table(titanic$survived,titanic$pclass),
col=c("yellow","dark blue"))
每个舱位死亡与幸存人数柱子的排列方式也可调整,beside为改变柱状图排列方式的命令;beside=T意为两个柱子并排,beside=F意为两个柱子上下叠放。
barplot(table(titanic$survived,titanic$pclass),
col=c("yellow","dark blue"), beside=T)
至此,我们已经可以将数字转变为直观的图像了,但是黄色和蓝色的柱子分别代表幸存者还是死亡者呢?此外,图像的标题等重要信息也未标示出来,图像的可读性还需要通过下面的步骤来提升:
设置图例、标题、坐标轴标签等
做法比较简单,在上面代码的基础上,增加一些命令即可:
barplot(table(titanic$survived,titanic$pclass),
col=c("yellow","dark blue"),
beside=T, legend=T, args.legend=list(x="topleft"),
main="Survival (Pct) by Passenger Class",
xlab="Class",ylab="Count",
ylim=c(0,600))
legend为设置图例的命令;args.legend为设置图例位置的命令;
main为设置图标题的命令;
xlab、ylab分别为设置x轴和y轴名称的命令;
ylim为设置y轴范围的命令。
从这个图像可以清晰地看出,一等舱的幸存者人数为三个舱位中最多的,而三等舱的死亡者人数远高于其他两个舱位。但是这个图像还缺少一个信息,就是各舱位的存活率,我们可以在每个舱位的柱子上面标记一下:
text(c(2,5,8),c(250,250,570),survpct, cex=1.2)
text()为给图片中增加文字的函数。
其中前两个命令为文字的位置信息,第一个命令为文字设置x轴方向的位置信息,c(2,5,8)表示将文字分别放置在x取值为2,5,8处。
第二个命令为文字增加y轴方向的位置信息,c(250,250,570)表示将其分别放置在y取值为250,250,570处。
第三个命令为文字的具体内容,survpct是之前程序的运行结果,为一、二、三等舱乘客的幸存率。
第四个命令cex为文字字号,默认值为1,此处设置为1.2,意为比默认字号大20%。
以上代码默认标题、x轴、y轴的文字均为英文,但有时我们也需要将其设置为中文,此时只需在上面这段代码中增加一个『字体 (family)』命令:将图片中的文字设置成中文。
barplot(table(titanic$survived,titanic$pclass), col=c("red","blue"),
beside=T, legend=T, args.legend=list(x="topleft"),
main="不同舱位乘客幸存数(率)", xlab="舱位",ylab="人数",family = "SimHei",
ylim=c(0,600))
family命令需要赋值字体的英文名称,本文将字体设置为"SimHei",即黑体。
此处还可设置其他字体,以下链接中总结了常见中文字体的英文名,大家可根据自己的需要选择。
部分字体中英文名称,资料来源于下面的链接
http://guangzheng.name/2017/12/18/%E5%A6%82%E4%BD%95%E8%B0%83%E6%95%B4R%E8%AF%AD%E8%A8%80%E7%BB%98%E5%9B%BE%E7%9A%84%E5%AD%97%E4%BD%93/
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26