
作者:接地气的陈老师
来源:接地气学堂
在做数据分析的时候,用户生命周期分析,是个很典型的“理论一听就懂,数据一做就废”的东西。很多同学很困扰:“到底生命周期该怎么算?为啥我算的套到业务上不成立!”今天我们系统解答一下。
1 书本上的生命周期
在各路书本、文章中,大家都看到过这张图:
要注意的是,这个图讲的是理论上的用户生命周期。它假设了用户留存与用户价值之间存在倒U型关系。
因此推导出:
等等理论结果。但这个假设前提,在具体的业务场景中很可能不成立,特别是数据上不会呈现完美曲线。因此会搞得很多做具体业务分析的同学很郁闷。
2 差异1:活跃与付费分离
对线下实体店而言,用户到店即付费,先消费后体验服务。但在互联网产品里,付费与活跃脱节的现象很常见。或者有的产品干脆允许用户只活跃,不付费,通过额外的权益和道具收费。比如游戏、在线音乐、视频、社区等等皆是如此。
总之,当用户活跃与付费脱节的时候,用户生命周期曲线变会发生变化:用户价值不再随留存时间变化,而是独立开,呈现出类似矩阵模型的样式(如下图)
这时候要特别注意各类型用户比例,特别是白嫖用户的比例。在各类型互联网产品里,白嫖用户都有相当比例。如果不加区分,一概而论,则会造成一种虚假繁荣的假象。最终结果会导致产品叫好不叫座,商业化过程极其艰难。
3 差异2:场景化消费
即使是消费与活跃行为紧密捆绑,也会出现问题。最常见的就是场景化消费,比如:
出行:
这就是典型的外因驱动。
电商:
这是典型的内因驱动。
注意,无论是内因还是外因,在现实生活中都是很正常,很合情合理的场景。可这些场景会共同导致一个结果:用户留存时间与用户价值不是倒U型,而是随机的,甚至难以捉摸规律(如下图)。
这导致用户生命周期曲线很难绘制,用户留存久了也不代表有价值,用户生命周期价值也难以估算。特别是大促销、爆款上市这种场景。最后用户还是看哪家便宜买哪个,跟之前的留存时间一点关系都没有。
这时候强行绘制用户生命周期,用平均值代替每个用户的真实情况。结果就是模糊了运营、营销、商品的作用,会造成一种虚假繁荣的假象。让大家以为:只要用户呆的久就早晚给钱了。结果发现用户生命周期价值的平均值越来越低。
4 差异3:浅尝辄止的新人
拉新,是所有互联网业务的核心,也是经常出幺蛾子的地方,拉来的新人完全不消费,或者过了很久才诈尸来消费一笔,都是很常见的事。这种浅尝辄止的新人比例一高起来,就会导致对拉新行动评估不准。
如果用平均值的话,会把这些实际上是0的人平均掉,又是在制造虚假繁荣。如果剔除出去,只统计有消费的人,显然又会高估渠道价值。并且,由于诈尸用户存在,导致周期长度难以统计(如下图)。
这种统计难,常常被业务部门拿来当甩锅借口。特别是当浅尝新人+场景化消费同时出现的时候,负责拉新的市场部、增长团队、营销部就喜欢扯:“得评估用户生命周期价值,不能只看眼前”“虽然用户现在没消费,但是300年内说不定就消费一大笔呀,所以不能说我做的差,是你统计的不准。”
处理这个问题也简单:只有交易周期很长的,才统计生命周期价值。类似B2B跟单,房、车等大额B2C交易,否则不去统计什么生命周期价值。类似打车、日用品、生鲜这些高频交易,拉来的用户一个月不消费就是拉新失败,扯啥生命周期。你们拉的用户都是辟谷修长生的吗?!一个月都不吃一顿?!真是的。
5 数据背后的深层次问题
这些数据问题背后,隐藏了一个更深层次的问题:用户对一个产品的全生命周期需求,到底是谁的。这年头随便到哪里买东西,一扫码就会关注一堆公众号小程序。我们被各种商家称为:“尊敬的会员”,可回头看看,你真的认为自己属于某个商家?你明知道别人家有优惠,还会在这里买????
有可能用户的生命周期依然存在,但是除非是微信这种超超级应用,否则根本无法一手掌握。用户的行为会分散在各个场景,各个应用里。这种情况下,是否还有必要按上个时代的做法,苦苦追求全生命周期价值?很有可能在这个年代的用户关系,就是场景化、事件化的。
正是基于这种思想,CDP的概念才会孕育而生,用基于场景的事件营销(被动)和推送营销(主动)取代了传统CRM理论里的用户等级、用户分群、用户价值曲线、用户成长路径。
简而言之,就是:我不指望用户属于我,我只在用户想要买单的时候抓住他就好了。当然,这种理念转化带来的最大挑战,就是营销成本的不确定。
过去算一个用户生命周期价值,然后按比例分配成本的做法,显然不适合每个场景切碎了做。如果对场景和需求的把握不到位,很有可能造成重复的资源投入。这里就要求更精细的数据分析支持。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07