京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:接地气的陈老师
来源:接地气学堂
在做数据分析的时候,用户生命周期分析,是个很典型的“理论一听就懂,数据一做就废”的东西。很多同学很困扰:“到底生命周期该怎么算?为啥我算的套到业务上不成立!”今天我们系统解答一下。
1 书本上的生命周期
在各路书本、文章中,大家都看到过这张图:
要注意的是,这个图讲的是理论上的用户生命周期。它假设了用户留存与用户价值之间存在倒U型关系。
因此推导出:
等等理论结果。但这个假设前提,在具体的业务场景中很可能不成立,特别是数据上不会呈现完美曲线。因此会搞得很多做具体业务分析的同学很郁闷。
2 差异1:活跃与付费分离
对线下实体店而言,用户到店即付费,先消费后体验服务。但在互联网产品里,付费与活跃脱节的现象很常见。或者有的产品干脆允许用户只活跃,不付费,通过额外的权益和道具收费。比如游戏、在线音乐、视频、社区等等皆是如此。
总之,当用户活跃与付费脱节的时候,用户生命周期曲线变会发生变化:用户价值不再随留存时间变化,而是独立开,呈现出类似矩阵模型的样式(如下图)
这时候要特别注意各类型用户比例,特别是白嫖用户的比例。在各类型互联网产品里,白嫖用户都有相当比例。如果不加区分,一概而论,则会造成一种虚假繁荣的假象。最终结果会导致产品叫好不叫座,商业化过程极其艰难。
3 差异2:场景化消费
即使是消费与活跃行为紧密捆绑,也会出现问题。最常见的就是场景化消费,比如:
出行:
这就是典型的外因驱动。
电商:
这是典型的内因驱动。
注意,无论是内因还是外因,在现实生活中都是很正常,很合情合理的场景。可这些场景会共同导致一个结果:用户留存时间与用户价值不是倒U型,而是随机的,甚至难以捉摸规律(如下图)。
这导致用户生命周期曲线很难绘制,用户留存久了也不代表有价值,用户生命周期价值也难以估算。特别是大促销、爆款上市这种场景。最后用户还是看哪家便宜买哪个,跟之前的留存时间一点关系都没有。
这时候强行绘制用户生命周期,用平均值代替每个用户的真实情况。结果就是模糊了运营、营销、商品的作用,会造成一种虚假繁荣的假象。让大家以为:只要用户呆的久就早晚给钱了。结果发现用户生命周期价值的平均值越来越低。
4 差异3:浅尝辄止的新人
拉新,是所有互联网业务的核心,也是经常出幺蛾子的地方,拉来的新人完全不消费,或者过了很久才诈尸来消费一笔,都是很常见的事。这种浅尝辄止的新人比例一高起来,就会导致对拉新行动评估不准。
如果用平均值的话,会把这些实际上是0的人平均掉,又是在制造虚假繁荣。如果剔除出去,只统计有消费的人,显然又会高估渠道价值。并且,由于诈尸用户存在,导致周期长度难以统计(如下图)。
这种统计难,常常被业务部门拿来当甩锅借口。特别是当浅尝新人+场景化消费同时出现的时候,负责拉新的市场部、增长团队、营销部就喜欢扯:“得评估用户生命周期价值,不能只看眼前”“虽然用户现在没消费,但是300年内说不定就消费一大笔呀,所以不能说我做的差,是你统计的不准。”
处理这个问题也简单:只有交易周期很长的,才统计生命周期价值。类似B2B跟单,房、车等大额B2C交易,否则不去统计什么生命周期价值。类似打车、日用品、生鲜这些高频交易,拉来的用户一个月不消费就是拉新失败,扯啥生命周期。你们拉的用户都是辟谷修长生的吗?!一个月都不吃一顿?!真是的。
5 数据背后的深层次问题
这些数据问题背后,隐藏了一个更深层次的问题:用户对一个产品的全生命周期需求,到底是谁的。这年头随便到哪里买东西,一扫码就会关注一堆公众号小程序。我们被各种商家称为:“尊敬的会员”,可回头看看,你真的认为自己属于某个商家?你明知道别人家有优惠,还会在这里买????
有可能用户的生命周期依然存在,但是除非是微信这种超超级应用,否则根本无法一手掌握。用户的行为会分散在各个场景,各个应用里。这种情况下,是否还有必要按上个时代的做法,苦苦追求全生命周期价值?很有可能在这个年代的用户关系,就是场景化、事件化的。
正是基于这种思想,CDP的概念才会孕育而生,用基于场景的事件营销(被动)和推送营销(主动)取代了传统CRM理论里的用户等级、用户分群、用户价值曲线、用户成长路径。
简而言之,就是:我不指望用户属于我,我只在用户想要买单的时候抓住他就好了。当然,这种理念转化带来的最大挑战,就是营销成本的不确定。
过去算一个用户生命周期价值,然后按比例分配成本的做法,显然不适合每个场景切碎了做。如果对场景和需求的把握不到位,很有可能造成重复的资源投入。这里就要求更精细的数据分析支持。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08