京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
上篇文章中,我们用世界银行的例子给大家介绍了R语言散点图怎么画,那折线图呢?
绘制折线图
如果将散点图上的点从左往右连接起来,就会得到一个折线图。今天我们以R中自带的Orange 数据集为例,来学习折线图的画法,该数据集中包含五种橘树的树龄和年轮数据。要考察橘树的年轮如何随着树龄变化,先画个散点图看看:
# 先看第一种橘树,提取第一种树的数据,保存在t1中 t1 <- subset(Orange, Tree==1)
戳此复习subset()函数的功能。
# 绘制散点图 plot(t1$age, t1$circumference, xlab="Age (days)", ylab="Circumference (mm)", main="Orange Tree 1 Growth")
再画折线图:
# 绘制折线图 plot(t1$age, t1$circumference, xlab="Age (days)", ylab="Circumference (mm)", main="Orange Tree 1 Growth", type="b")
可以发现,绘制折线图使用的仍是plot()函数,其代码只比散点图的多了一个用来设置图形外观的命令:type='b','b'表示用线条将点连接起来,因此我们就得到了下图:
折线图的图形外观还可以有很多种,均可通过type命令来完成,下表展示了type可选的取值:
选取上表中各种类型的type值,就可以得到各式各样的折线图:
试着调整图形
虽然上面的图形已经可以准确表达数据信息,但有时自动生成的图形可能无法满足需求。
比如,我们想把上面的散点图和折线图放在同一张图中,便于比较,或者想改变文字的字体、颜色等…… 此时,可以在用plot()作图前,先用par()函数设置你想改变的参数:
# 设置par()函数
par(mfrow=c(1,2),bty='l',cex.main=1.5,
col.main='deepskyblue4',font.lab=2,
family='Times New Roman')
# 绘制散点图
plot(t1$age, t1$circumference,
xlab="Age (days)",
ylab="Circumference (mm)",
main="Orange Tree 1 Growth")
# 绘制折线图
plot(t1$age, t1$circumference,
xlab="Age (days)",
ylab="Circumference (mm)",
main="Orange Tree 1 Growth",col='deepskyblue4',
type="b")
大家可以先将这段代码复制到R中运行(记得先用本文开头的方法生成t1这个对象),看看出现了什么?
par(mfrow=c(1,2),bty='l',cex.main=1.5,
col.main='deepskyblue4',font.lab=2,
family='Times New Roman')
par()是R中用来设置图形参数的函数。
上面的代码中,mfrow是图形整体布局命令,不是针对某个具体的图形而言的,而是对整个绘图区域的布局。定义整体有几行、几列图形,其赋值形式为c(行数,列数);
bty是设置图形边框类型的函数,其取值及效果如下图:
cex.main:设置标题文本的放大倍数,还可用cex.axis 和 cex.lab分别设置坐标轴刻度值和名称文本的放大倍数;
col.main:设置文本标题的颜色,大家能猜出坐标轴刻度值和名称的颜色如何设置吗?欢迎留言呀~
font.lab:设置坐标轴名称的字型:
family:设置图形中所有文本的字体。
最终得到的图形如下,你还能想到哪些需要改进或调整的地方呢,我们可以作为今后讲授的内容
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12