
mysql性能优化就是通过合理安排资源,调整系统参数使mysql运行更快、更节省资源。mysql性能优化包括查询速度优化、数据库结构优化、mysql服务器优化等。
优化简介
优化数据库是数据库管理员和数据库开发人员的必备技能。MySQL优化,一方面是找出系统瓶颈,提高MySQL数据库整体的性能;另一方面需要合理的结构设计和参数调整,以提高用户操作响应的速度;同时还要尽可能节省系统资源,以便系统可以提供更大负荷的服务。
例如,通过优化文件系统,提高磁盘I/O的读写速度;通过优化操作系统调整策略,提高MySQL在高负荷情况下的负载能力;优化表结构、索引、查询语句等使查询响应更快。
在MySQL中可以使用SHOW STATUS语句查询一些MySQL数据库的性能参数。
语法:
show status like 'value';
其中,value是要查询的参数值,常用的性能参数如下:
示例:查询MySQL服务器的连接次数
优化查询
查询是数据库中最频繁的操作,提高查询速度可以有效地提高MySQL数据库的性能。
分析查询语句
通过对查询语句的分析,可以了解查询语句的执行情况,找出查询语句执行的瓶颈,从而优化查询。
MySQL中提供了EXPLAIN语句和DESCRIBE语句来分析查询语句。
语法:
EXPLAIN/DESCRIBE [EXTENDED] SELECT select_options
示例:
索引对查询速度的影响
MySQL中提高性能的一个有效方式就是对数据表设计合理的索引。索引提供了高效数访问数据的方法。并且可以加快查询的速度,因此,索引对查询的速度有着至关重要的影响。
索引简介
索引是对数据库表中一个或多个字段的值进行排序的一种结构,使用索引可提高数据库中特定数据的查询速度。
索引的意义
索引是一个单独的、存储在磁盘上的数据库结构,包含着对数据表里所有记录的引用指针。使用索引可以快速找出在某个或多个字段中有特定值的行。
如果不使用索引,MySQL必须从第一条记录开始检索表中的每一条记录,直到找出相关的行。那么表越大,查询数据所花费的时间就越多。
如果在表中查询的字段有索引,MySQL能够快速到达一个位置去检索数据文件,而不需要再去查看所有数据,那么将会节省很大一部分查询时间。
比如说emp表中1W个员工的记录,要查询工号为7566的员工信息select * from emp where empno=7566,如果没有索引,服务器会从表中第一条记录开始,一条条往下遍历,直到找到empno=7566的员工信息。
如果在empno这个字段上创建索引,就可以索引文件里面找empno=7566这一行的位置,而不需要再遍历1W条记录了。
索引的优缺点
所有MySQL的字段类型都可以添加索引,但是索引也不是越多越好,而是要根据业务数据合理的使用。
优点
缺点
创建索引的原则
索引设计不合理或缺少索引都会对数据库和应用程序的性能造成障碍,高效的索引对于获得良好的性能非常重要。
需要创建索引的情况
不需要创建索引的情况
索引的结构
索引是在存储引擎中实现的,使用不同的存储引擎,所支持的索引也是不同的。
在mysql中常用两种索引结构BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样。
MyISAM和InnoDB存储引擎只支持BTREE索引,MEMORY/HEAP存储引擎支持HASH和BTREE索引。
MySQL的InnoDB存储引擎是支持hash索引的,不过我们必须启用,hash索引的创建由InnoDB存储引擎自动优化创建,我们干预不了。
索引的类型
索引的类型可以分类以下几种:
索引的操作
实际上索引也是一张表,创建索引时,数据库管理系统会在本地磁盘建立索引文件,里面保存了索引字段,并指向实体表的记录。
创建索引
create index <索引名> on <表名>(<字段名>);
自动创建索引
示例:emp表中的job添加普通索引
mysql> create index job_index on emp(job);
查看索引
语法:
show index from <表名>;
示例:查看emp表中的索引
使用索引
在查询语句中使用索引会大大提升数据的检索速度。 示例:
删除索引
删除索引只是删除了表中的索引对象,表中的数据不会被删除。 语法:
drop index <索引名> on <表名>;
示例:
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02