
作者:Mika
数据:真达
如果说冬天对北方人来说只是一个季节,而对南方人来说是一场“渡劫”。北方的冷是干冷,物理攻击,多穿一点就好了。而且室内有暖气,在室内可以穿着短袖吃冰棍。
而南方的冷是湿冷,魔法攻击,穿再多没有用。而且室内还没暖气,各种段子也是层出不穷:
“你在北方的暖气里四季如春,我在南方的寒冬下冻成冰棍儿”
“北方人过冬靠的是暖气,南方人过冬靠的是一身正气”
“我是一只来自北方的狼,来到南方却被冻成了狗”
一到冬天南方人除了靠一身浩然正气,空调、电热毯、油汀、电暖气等各类花式取暖电器都得安排上。
内贸批发平台1688上获取的数据显示,进入11月以来,暖气片在南方城市的销量比去年同期增长了300%,平台上取暖小家电品类整体营业额同比增幅达到200%,其中发热垫的同比增速甚至高达600%。
据显示,暖气片和暖气设备销量贡献最大的国内客户,主要都是来自长江沿线城市,以江浙沪、安徽、湖南、湖北、重庆、四川等地居多,一时间“南方取暖设备被买爆”话题登上了微博热搜,让人不禁感叹南方人过个冬天实在是太难了。
用Python分析全网取暖器数据
我们使用Python获取了淘宝网搜索关键词暖气片、取暖器、壁挂炉的商品数据,并进行了数据分析。
1.读取数据
首先导入获取的数据。
# 导入工具包 import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Map, Page from pyecharts import options as opts import jieba
# 读取数据 df_all = pd.read_csv('../data/导出数据.csv')
df_all.head()
df_all.shape (13212, 7)
2.数据清洗和整理
此处我们需要对数据集进行数据清洗以便后续分析和可视化,主要工作内容如下:
代码实现如下:
df = df_all.copy() # 去除重复值 df.drop_duplicates(inplace=True)
df.shape
(6849, 7)
# 筛选记录 df = df[df['purchase_num'].str.contains('人付款')] # goods_price列处理 df['goods_price'] = df['goods_price'].str.extract('(d+.{0,1}d*)') df['goods_price'] = df['goods_price'].astype('float') # purchase_num列处理 df['num'] = df['purchase_num'].str.extract('(d+.{0,1}d*)') df['num'] = df['num'].astype('float') df['unit'] = [10000 if '万' in i else 1 for i in df['purchase_num']] # 计算销量 df['purchase_num'] = df['num'] * df['unit'] # 计算销售额 df['sales_volume'] = df['goods_price'] * df['purchase_num'] # 提取省份字段 df['province_name'] = df['location'].astype('str').str.split(' ').apply(lambda x:x[0]) # 删除多余的列 df.drop(['num', 'unit', 'detail_url'], axis=1, inplace=True) # 重置索引 df = df.reset_index(drop=True) df.head()
3.数据可视化
此处我们对店铺销量、产地分布、商品价格等方面进行可视化分析:
市场上的取暖器种类较多,有暖风机、小太阳、电热膜、油汀、快热炉、踢脚线等取暖设备,我们首先看到这些取暖器的标题词云。
商品标题词云图
可以看到"取暖器" "暖风机" "暖气片"都是出现的高频词。在特征方面"家用" "节能" "速热"都十分常见。
接着,看到店铺月销量排名Top10。
店铺月销量排名Top10
可以看到店铺销量前十,凯瑞莱旗舰店位居第一。其后春尚电器专营店和苏宁易购分别是第二第三名。排在前十的还有美的、tcl等品牌。
# 计算top10店铺 shop_top10 = df.groupby('shop_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
全国各省份产地销量排名Top10
这些取暖器的产地都在哪儿呢?经过分析发现,浙江是生产取暖器的头号大省,在产地销量排名中一骑绝尘位居第一。之后排在第二位的是广东。湖南、江苏、山东分别位居第三第四第五名。
# 计算销量top10 province_top10 = df.groupby('province_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
不同价格区间的商品数量占比
取暖器都卖多少钱呢?经过分析发现,100元以下的商品是最多占比高达34.76%。其次是200-500元的商品,占比22.09%。
不同价格区间的销量占比
与此同时,在销量方面,价格在100元以下和100-200元之间的取暖产品也是销量最好的,全网销售量分别占比37.49%和35.92%。
结语
有了各式各样的取暖器,南方冬天就好过了吗?并不,空调开久了干,踢脚线耗电高,油汀等电暖气更适合局部取暖,大空间制热效果差。
虽然近年来也有很多南方家庭选择全房装地暖的,然而电暖用起来一个月电费就高达2、3千,这可能就是北方一个冬天的暖气费用了。这么对比起来,似乎还是开空调和取暖器实在啊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05