作者:Mika
数据:真达
如果说冬天对北方人来说只是一个季节,而对南方人来说是一场“渡劫”。北方的冷是干冷,物理攻击,多穿一点就好了。而且室内有暖气,在室内可以穿着短袖吃冰棍。
而南方的冷是湿冷,魔法攻击,穿再多没有用。而且室内还没暖气,各种段子也是层出不穷:
“你在北方的暖气里四季如春,我在南方的寒冬下冻成冰棍儿”
“北方人过冬靠的是暖气,南方人过冬靠的是一身正气”
“我是一只来自北方的狼,来到南方却被冻成了狗”
一到冬天南方人除了靠一身浩然正气,空调、电热毯、油汀、电暖气等各类花式取暖电器都得安排上。
内贸批发平台1688上获取的数据显示,进入11月以来,暖气片在南方城市的销量比去年同期增长了300%,平台上取暖小家电品类整体营业额同比增幅达到200%,其中发热垫的同比增速甚至高达600%。
据显示,暖气片和暖气设备销量贡献最大的国内客户,主要都是来自长江沿线城市,以江浙沪、安徽、湖南、湖北、重庆、四川等地居多,一时间“南方取暖设备被买爆”话题登上了微博热搜,让人不禁感叹南方人过个冬天实在是太难了。
用Python分析全网取暖器数据
我们使用Python获取了淘宝网搜索关键词暖气片、取暖器、壁挂炉的商品数据,并进行了数据分析。
1.读取数据
首先导入获取的数据。
# 导入工具包 import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Map, Page from pyecharts import options as opts import jieba
# 读取数据 df_all = pd.read_csv('../data/导出数据.csv')
df_all.head()
df_all.shape (13212, 7)
2.数据清洗和整理
此处我们需要对数据集进行数据清洗以便后续分析和可视化,主要工作内容如下:
代码实现如下:
df = df_all.copy() # 去除重复值 df.drop_duplicates(inplace=True)
df.shape
(6849, 7)
# 筛选记录 df = df[df['purchase_num'].str.contains('人付款')] # goods_price列处理 df['goods_price'] = df['goods_price'].str.extract('(d+.{0,1}d*)') df['goods_price'] = df['goods_price'].astype('float') # purchase_num列处理 df['num'] = df['purchase_num'].str.extract('(d+.{0,1}d*)') df['num'] = df['num'].astype('float') df['unit'] = [10000 if '万' in i else 1 for i in df['purchase_num']] # 计算销量 df['purchase_num'] = df['num'] * df['unit'] # 计算销售额 df['sales_volume'] = df['goods_price'] * df['purchase_num'] # 提取省份字段 df['province_name'] = df['location'].astype('str').str.split(' ').apply(lambda x:x[0]) # 删除多余的列 df.drop(['num', 'unit', 'detail_url'], axis=1, inplace=True) # 重置索引 df = df.reset_index(drop=True) df.head()
3.数据可视化
此处我们对店铺销量、产地分布、商品价格等方面进行可视化分析:
市场上的取暖器种类较多,有暖风机、小太阳、电热膜、油汀、快热炉、踢脚线等取暖设备,我们首先看到这些取暖器的标题词云。
商品标题词云图
可以看到"取暖器" "暖风机" "暖气片"都是出现的高频词。在特征方面"家用" "节能" "速热"都十分常见。
接着,看到店铺月销量排名Top10。
店铺月销量排名Top10
可以看到店铺销量前十,凯瑞莱旗舰店位居第一。其后春尚电器专营店和苏宁易购分别是第二第三名。排在前十的还有美的、tcl等品牌。
# 计算top10店铺 shop_top10 = df.groupby('shop_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
全国各省份产地销量排名Top10
这些取暖器的产地都在哪儿呢?经过分析发现,浙江是生产取暖器的头号大省,在产地销量排名中一骑绝尘位居第一。之后排在第二位的是广东。湖南、江苏、山东分别位居第三第四第五名。
# 计算销量top10 province_top10 = df.groupby('province_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
不同价格区间的商品数量占比
取暖器都卖多少钱呢?经过分析发现,100元以下的商品是最多占比高达34.76%。其次是200-500元的商品,占比22.09%。
不同价格区间的销量占比
与此同时,在销量方面,价格在100元以下和100-200元之间的取暖产品也是销量最好的,全网销售量分别占比37.49%和35.92%。
结语
有了各式各样的取暖器,南方冬天就好过了吗?并不,空调开久了干,踢脚线耗电高,油汀等电暖气更适合局部取暖,大空间制热效果差。
虽然近年来也有很多南方家庭选择全房装地暖的,然而电暖用起来一个月电费就高达2、3千,这可能就是北方一个冬天的暖气费用了。这么对比起来,似乎还是开空调和取暖器实在啊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26