俗话说:知己知彼,方能百战百胜,你对职业发展抱着什么心态!
大四的小明近来非常沮丧,努力考研却遭遇滑铁卢,心有不甘,聊到为什么要考研时,让人有点震惊……
他喜欢金融,偏偏本科专业差十万八千里,小明执着地认为考研读了金融学,才能找到热爱的工作。
二大爷家的女儿,今年23岁,大专学历,做文案类工作,对未来充满迷茫。
想自考本科,又不知道报什么专业好。想从事会计,却听说竞争激烈且工作枯燥,怕自己厌烦;想一直做文案工作吧,又怕创意不够,未来发展空间小……
而工作不到3年的小美一直在跳槽,听说她最近又换了一份工作,于是临时起意,和她聊了聊跳槽的原因。
她满脸惆怅地说:“我没想那么多,觉得工作干顺手,待遇不错,就先干着呗,不顺手,不顺心了就换呗!”
可是,她并不知道抱着“能干,就干”的心态,浪费了毕业后的这几年,会给她的职业生涯带来多大且持久的负面影响。
上述案例的主人公们可能并没有发现,自己的职业定位清晰度基本接近0,而这种模糊正在破坏着他们美好的未来。
职业定位不清对未来有啥影响?
古有云:吾十有五而志于学,三十而立,四十而不惑,五十而知天命, 六十而耳顺,七十而从心所欲,不逾矩。
早在几千年前,大教育家孔子就告诉我们要:志于学。
现代社会很多人都没有清晰的职业定位,对此他们毫无危机感,或者可以说是无所谓。然而“人无远虑必有近忧”,那些他们并没有意识到的莫名危机,正在一步步靠近。
职业定位不清对未来有哪些危害?
1、无法可持续发展
很多人认为自己事业没起色是能力不够,但是你是否有认真思考过“我是谁?”、“我想干什么?”、“环境支持我干什么?”
或许只是你对自己的认知不够,所以像迷失了方向的羊羔,充满抱怨和无奈,却始终无法找到真正适合的工作。
2、无法积累有利资源
明确的职业定位,让你有明确的目标和方向,在奔向目标的过程中,你会有意识地积累相关领域的人脉、知脉、金脉。
职场有个“聚焦法则”,把所有资源都集中于某个点,才最容易成功,如:审计或会计会致力于考CPA、金融从业者的终极目标是考CFA,数据分析入门和进阶则会考取CDA数据分析师证书……
简而言之,当你职业定位不清晰时,就容易博而不专,失去最核心的竞争力。
3、无法抵御外界干扰
当定位不清晰时,人就没有重心,从而容易被外界的干扰,被一时的高薪、享受、虚浮所吸引,放弃了真正有发展前景的工作。
另外,如果你没有明确的目标,一旦遭遇困难,哪怕只是个小难题,便会丢盔弃甲,无法在事业上发光发热。
如何找到自己的职业定位呢?
准确地定位,可使自己集中精力用于自己擅长的领域,从而可以获得更加长足的发展。
可是,我不知道怎么定位?埋头看规划书或视频吗?好像也没学到什么!
——为什么呢?
1、很多书籍或视频并没给出具体的自我分析和定位的方法;
2、知识面太广,每个人脚下的路都不同,无法生搬硬套;
3、很多不定的因素,如:所处行业、兴趣爱好、能力擅长也各不一样。
与其像无头苍蝇一样四处碰壁,不如看准一个有发展前景的行业,并针对自己的实际情况,来精准分析职业定位。
如果您一时拿捏不准要从事或转向哪个行业,可多留意目前较热或常被人挂在口边的技能或证书,因为行业越热出现的证书含金量越高,技能越硬越易被认证。
譬如:财会界的CPA、金融业的CFA、大数据分析行业的CDA……这些都是非常值得考的大厂敲门砖。
值得一提的是,如今的大数据相关人才需求缺口巨大,乃优选行业之一。与学历相比,企业更看重数据分析岗求职者的实操能力。
想了解大数据分析
扫码一对一交流
▼▼▼
故而,无论科班生还是零基础者,通过理论与实操结合的系统学习,便可掌握一定的数据分析能力和技巧。
今天,我们以数据分析行业为例,聊一些职业规划中较实用的面试技巧,让你从众多求职者中脱颖而出,拿下更多offer!
01、明确自己的定位
具体工作内容及想从事哪块:找工作方向
▪ 数据整理
▪ 数据建模
▪ 数据分析
▪ 数据可视化
▪ 报告撰写
内容模板一
▪ 熟练SQL语言
▪ 熟练pythonshujuqingxi/' style='color:#000;font-size:inherit;'>python数据清洗和建模
▪ 熟练使用数据可视化工具
▪ 会撰写数据分析报告
内容模板二
▪ 业务:熟悉行业及周边的业务知识
▪ 管理:熟练企业管理和数据应用结合
▪ 分析:精通数据分析原理及方法
▪ 综合:较强沟通能力及项目管理能力
▪ 设计:较好BI与数据仓库架构设计能力
▪ 工具:熟悉主流BI工具和数据库
02、客观的自我评价
个人能力框架的范围:几个维度
▪ 是否具备数据分析项目经验?
▪ 常用哪些数据分析工具?
▪ 对数据是否敏感?
▪ 是否有较强的多重逻辑思考力?
▪ 思维是否习惯结构化?
▪ 是否能快速适应新环境和团队?
▪ 可承受较大工作强度,接受出差?
03、面试的常见问题
Q:请自我介绍一下?
A:不要只说姓名、年龄、爱好、工作经验等简历上有的。
▷ HR温馨提示:
提前准备好,涵盖自己与众不同甚至独一无二之处,同时保留某些不突出或中庸点,介绍不宜过长,在60s内即可。
----------------
Q:你对薪资的要求?
A:愁死很多英雄汉的问题,要求太低自己过不去,要求太高又怕公司用不起。
▷ HR温馨提示:
不管工作岗位和内容是否符合,必然会涉及到薪酬,建议可要求行业内的平均工资。另外,在复试结束时,务必询问目标岗位薪酬体系和KPI考核细节。
----------------
Q:你能接受加班吗?
A:这个问题,面试官并非一定要你加班,只是想测试你是否愿意为公司奉献。
▷ HR温馨提示:
先明确上下班时间及加班的原因,陈述自己会全身心投入工作,并不断提高工作效率,积极主动地完成好自己的工作。
----------------
Q:上一家公司离职的原因?
A:就算上份工作受了再大委屈,都不要口出怨言,尤其要避免对管理层的批评。
▷ HR温馨提示:
客观陈述就好,如:没发展空间,与自己的职业规划不合等,回答要积极正面。
直接与专业老师
一对一VIP交流
▼▼▼
Q:一名数据分析师要具备哪些技能?
A:数据分析师需能准确分析、组织、收集或传播数据;掌握数据库设计,数据模型,数据挖掘等方面的技术知识以及分析大型数据集(SAS,Excel,SPSS等)的统计软件包知识。
另外,根据工作和发展的方向不同,需掌握相应工具,这时应具体情况具体分析。
----------------
Q:分析项目的步骤包括哪些?
A:包括问题定义、数据挖掘、数据准备、模型化、数据认证、实施跟踪。
----------------
Q:数据挖掘和数据分析的区别?
A:数据分析是针对个别属性的实例分析,提供有关属性的各种信息,如值范围,离散值及其频率,空值的发生,数据类型,长度等。
而数据挖掘则更侧重聚类分析,异常记录检测,依赖关系,序列发现,多个属性之间的关系控制等。
CDA数据分析师就业服务老师建议,无论面试结果如何,一定要进行归纳总结。面试中被问到了不懂的问题,要及时解决,以防下次在同一个问题上再跌倒。
如果您对数据分析行业感兴趣,不妨多了解下数据分析师的各个方向,已经相关岗位的要求,有的放矢去学习和了解。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20