来源:丁点帮你
作者:丁点helper
在前面的文章中,我们跟大家一起学习了R中的数据导入、基本的操作方法、描述性统计等内容。
这其中的很多操作都是针对格式和内容都完好的数据而言的。但在实际工作中,我们收集到的数据往往不那么完美,需要先进行一番清理。今天开始,我们来学习如何将杂乱的数据整理得井井有条。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
示例数据是某高校教师对本班学生的调查结果,为方便练习,大家可先下载:
文件名:survey.csv
链接: https://pan.baidu.com/s/1XZgdyb59wPyWy6wp_hmoQw
密码: 5lyw
survey <- read.csv("//Users//Desktop//titanic.csv", header = TRUE)
用下面的语句来了解一下这个数据:
#数据有多少行多少列dim(survey)[1] 238 17#获取数据中的变量名称 names(survey) [1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" [9] "Exercise" "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" [17] "Pulse"
可以知道,这项调查共涉及到238名同学,调查项目有17项。
数据清理第一步:有无缺失
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
今天这篇文章只介绍如何对数据的完整性进行判断。
在survey这个数据库的238条记录中,如果某条记录中的17个变量都获取到了信息,不存在漏填的情况,那么认为这条记录是完整的。
1.用complete.cases()这个函数得到数据中的每条记录是否完整,其结果是一个逻辑型变量。
如下面的结果,survey这个数据的第一条记录(第一行)是完整的,而第232条记录是不完整的。
complete.cases(survey) [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [20] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [39] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [58] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE [77] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE [96] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[115] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[134] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[153] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[172] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE[191] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[210] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE[229] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
2. 那么有多少条记录是完整的呢?根据下面的结果,答案是232条。
下面的语句中,which()的作用是得到逻辑型变量complete.cases(survey)中值为TRUE的顺序号。大家可以自行运行一下which(complete.cases(survey))这个语句,看看结果是什么。
所以最后用length(),可以得到共有多少条记录的完整性检验结果为TRUE。
length(which(complete.cases(survey)))[1] 232
3. 仅保留所有完整的记录,并生成一个新数据集。有两种方法:
# 仅保留complete.cases(survey) = TRUE的记录 survey_com <- survey[complete.cases(survey),] # 去掉有缺失情况的记录survey_com <- na.omit(survey)
4. 我们也可以看看有缺失的记录是哪些,来进一步考察数据的缺失规律。
survey_miss <- survey[!complete.cases(survey),] survey_miss
结果如下图:
小结
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
面对一个数据,除了了解数据的行、列、变量等,每条记录的完整性是我们首先需要关注的问题之一。因为缺失记录和未缺失记录之间的差异很可能会对数据分析结果的准确性有直接影响。
通过本文介绍的4个方面来判断数据的缺失情况、定位完整数据和缺失数据,可以对所得样本的质量进行估计,也可为数据填补做好准备。
关于缺失数据的处理方法,大家可以参考这篇文章。
如果你也有待处理的数据,那么快用今天学的方法检验一下你的数据是否完整吧。
只有从根本上了解自己的数据,把每一个缺失值处理好,才可能做出逻辑严密、有说服力的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30