京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
本文帮你快速掌握数据分析师必须会用的两个工具 - ipython和jupyter notebook。
既然有了Python,为什么还要ipython?麦叔不用说话,给你一张图你就明白啦。jupyter notebook又是什么鬼?
建议把本文放到收藏夹。吃灰也好过需要的时候找不到。
iPython是Interactive Python,它是基于Python的一个包装。它其实就是一个可以通过pip安装的包。提供了普通python之外的一些功能,其中一个功能就是可以显示图片。
iPython在数据分析师,数据科学家,人工智能科学中经常使用。
(1)安装
python -m pip install ipython
(2)使用
ipython就是Python,使用方法和使用普通的交互式Python一样,代码也一样。只不过输出显示上有一定优化。
zjueman@maishu data_analysis % ipython Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019,
14:08:53) Type 'copyright', 'credits' or 'license' for more information IPython
7.21.0 -- An enhanced Interactive Python. Type '?' for help. In [1]:
2.使用ipython:为了运行一下代码,请先安装numpy:
python -m pip install numpy
In [1]: a = 5 In [2]: b = "麦叔" In [3]: import numpy as np In [4]:
data = {i:np.random.randn() for i in range(7)} In [5]: data Out[5]: {0: 0.8738401705018338,
1: 0.7173530856483666, 2: 1.269301701227684, 3: -0.6322949353286054, 4: -2.3619895093818295,
5: -0.9031446928993554, 6: -0.07942775508126601}
3.问号寻求帮助:
In [4]: name = 'maishu' In [5]: name?
Type: str
String form: maishu
Length: 6 Docstring:
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.__str__() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
4.退出
In [10]: quit() zjueman@maishu data_analysis %
5.画图 为了运行一下代码需要先安装matplotlib
python -m pip install matplotlib
In [1]: import numpy as np In [2]: %matplotlib Using matplotlib backend: MacOSX In [3]: import matplotlib.pyplot as plt In [4]: plt.plot(np.random.randn(50).cumsum()) Out[4]: [<matplotlib.lines.line2d at 0x7fa7e7f8ce20>]matplotlib.lines.line2d at 0x7fa7e7f8ce20>
数据科学家们觉得ipython还不够过瘾,又在ipython基础上开发了jupyter notebook:一个基于网页的写代码界面。
jupyter是基于ipython的,很多操作几乎都一样。但是它有很多独特优点:
(1)文件可以保存为ipynb的文件
(2)在线编写代码
(3)支持多人协作
(4)支持markdown格式的文档
1. 安装
python -m pip install jupyter
2. 启动
> jupyter notebook
这个命令会在本机的8888端口上运行一个网站,并自动打开浏览器:
http://localhost:8888/tree
3. 基本使用
(1)创建文件
(2)编写和运行代码
(3)保存和修改文件名
4. Tab补全
在notebook中打代码的过程中,按Tab键可以自动提示和补全,类似于Pycharm和VSCode等IDE的功能:
它可支持:
(1)自动补全变量名
(2)自动补全函数名
(3)自动补全文件名等
5. 集成matplotlib画图
6. 魔术命令
(1)运行脚本:%run
(2)打印命令输入历史:%hist
(3)运行效率:%timeit
(4)其他魔术命令
(1)停止执行:Ctrl+C
(2)其他ipython快捷键
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24