数据科学家在他们的指尖有一个可能性的世界。其中许多都位于商业智能和数据分析领域。在商业环境中,发现增长机会和低效率以及击败竞争对手是最重要的,像这样的纪律可能是最有价值的。
数据专家可以通过了解首席财务官(CFO)关心的信息和报告来获得他们公司的首席财务官(CFO)的关注。数据科学可以提供增值和可操作的商业智能和预测。以下是如何让你的首席财务官侧耳倾听,为你的公司提供高质量的分析,并在此过程中提升你的价值和职业生涯。
到2030年,商业分析将成为一个价值6840亿美元的行业。能够帮助他们的公司和首席财务官在这场军备竞赛中领先的数据科学家往往会确保他们的地位,并很好地展示他们的价值。
为了做到这一点,数据科学家必须了解商业分析的主要类型,以及它们如何应用于企业规划的数字驱动游戏。
业务分析的这一分支提供对过去事件的洞察力,如公司业绩和更广泛的行业趋势。研究过去发生的事情有助于公司认清自己的弱点和长处。
对于首席财务官来说,这可能包括从市场波动和现金流问题到员工流失和支出模式等任何事情。其他因素也会影响公司的灵活性和对未来的准备。
诊断性商业分析建立在描述性分析发现的基础上。它提供了对公司数据的更详细的调查,以发现隐藏的风险和伤亡,并最终解释为什么事情会以这种方式发生。
这是为未来制定战略的一个至关重要的部分。清楚地看到哪里出现了低效或哪里出现了浪费,可以让首席财务官的工作变得容易得多。
预测性业务分析首先实现了收集组织数据的承诺。历史信息帮助数据科学家和决策者了解事件或趋势再次发生的可能性。在商业环境中,这包括预测劳动力的增长或下降,考虑需求和购买行为的未来变化,以及检测金融欺诈或网络安全事件。
财务规划和分析行业的专家表示,公司使用的方法并没有像许多人希望的那样迅速发展。在这一领域的强大的主题知识转化为在一个充满了未满足的数据分析专业人员需求的就业市场中的可取性。2021年,美国一些账户的公开职位列表约为14万份。
这种类型的业务分析是前几种分析的顶点。规定性分析将当前的洞察力与理性的、以数据为导向的对未来的推断相结合,并将其翻译成首席财务官和其他决策者关心的语言。
从原始数据到分析,再到针对高管的可操作建议的翻译缺少几个步骤。其中最关键的是报告工具。
数据科学家可以轻松地找到商业智能工具和仪表板的客观评论。他们需要知道如何表达决策者关心的信息,以便有效地向首席财务官和高管发言,
首席执行官、首席财务官和其他决策者最有可能感兴趣的一些仪表板包括以下内容:
今天市场上的许多工具都提供了为特定业务领域预先设计的模板。各种产品还可能包括数据分段和仓储功能,以组织可用数据--这是从其中获取任何附加价值的第一步。
在许多业务领域和关键工作流中,这种以数据为导向的思想交流正成为创新和业务精简的温床。以下是数据科学正在定义寻求更精简、更清洁、更有利可图和透明的公司结构的一些地方:
有没有一种途径可以让一个面向商业智能的数据科学家自己成为首席财务官?答案是肯定的--而且有成功的故事描述了这一进展。
一个例子是,一名数据监控系统专家--旨在发现欺诈迹象或锁定投资机会--将他对大数据主导的财务战略的知识引入首席财务官的角色。这里所利用的风险洞察力和商业机会,以及公司角色的飞跃,都是可能的,因为这位科学家知道如何很好地利用“数据枯竭”。
金融科技行业的数据监控和机器学习只是数据科学家角色补充首席财务官角色的一个地方。在商业智能报告和对工业每天产生的大量信息的深入分析之间,如果决策者知道如何抓住机会,数据科学家可以为他们提供很多东西。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20