大约18个月前,由于新冠肺炎疫情,我失去了工作。我在大学里做兼职家教。我从家教中得到的钱被用来支付食物、汽油和汽车等费用。
在政府对全国实施封锁限制后,我无法继续教学。我也上不了大学,只能在家学习。
虽然一开始这看起来很糟糕,但我意识到不上大学和工作腾出了我的很多时间。
在这段时间里,我开始考虑扩大我的技能集。在做了一些研究后,我发现了一个机器学习在线课程,看起来很有趣。
那是我完成的第一门在线课程。
在那之后,我把大部分时间都花在了构建项目、学习编码和获得在线认证上。
现在--18个月来,我已经用我在数据科学和分析领域的知识建立了多种收入流。
我最初作为数据科学实习生加入一家公司一段时间,现在在那里全职工作。
起初,我希望我的工作主要包括建模。
然而,一旦我加入,我意识到我的工作只有大约10%的模型建立。其余的时间,我和我的团队都在寻找新的解决方案,我们可以创建来解决业务问题。
通常,这些问题甚至不需要机器学习来解决。数据解决方案可以只包含转换为简单SQL查询的业务逻辑。
我每天做的工作包括回答以下问题:
这是对我每天所做工作的一个非常抽象的描述,但我想强调的是,创建数据科学解决方案并不是从模型构建开始和结束的。
如果你是一个有抱负的数据科学家,我建议在你想工作的行业获得一些领域知识。
我写我在数据科学领域的经验。
如果我在工作中构建一个项目,我会在Kaggle上找到一个类似的数据集并复制分析,并围绕它创建一个教程。
我最初开始编写和发布数据科学教程,以增强我的投资组合。
写关于我工作的文章是我与其他有抱负的数据科学家联系的一种方式。这也是我展示自己编写和构建ML模型能力的一种方式。
最初,我从没想过我的写作会得到报酬。我只是认为这是一个很好的方式来增强我的数据科学投资组合。
然而,在过去的一年里,一开始是业余爱好的事情开始产生收入。
我现在可以通过简单地创建与数据相关的教程、项目和写我的经历来获得被动收入。
当我开始在数据科学界建立一个在线存在时,我开始得到多个自由职业的邀请。我为客户建立了一次性的机器学习模型,创建了竞争对手分析报告,并撰写了数据科学文章。
当我最初想到自由职业时,我想象着必须在在线平台上竞争和投标项目。
然而,我所有的自由职业客户在阅读了我的文章或看了我的投资组合项目后,都联系了我。
几个月前,我构建了一个聚类算法,并在网上发布了一个关于它的教程。第二天,有人联系我,问我是否有兴趣为他们的客户构建一个集群模型。
自由职业使我具备了许多我通常工作领域之外的技能。
在我的公司里,我处理的数据通常是以某种预先处理的格式出现的,我用SQL和Python查询数据来利用它。
然而,当自由职业者时,客户数据的格式非常不同。其中大部分都没有经过处理或结构化,我花了很多时间来弄清楚数据集之间的关系并理解它。
我还需要收集外部数据来进行分析,这通常涉及到搜索第三方网站和使用开源工具。
我觉得自由职业让我接触到了我目前在日常工作中没有的知识,我能够通过我从事的每一个项目学到新的东西。
我上面提到我上了一门数据科学在线课程,事情从那里发生了变化。你可能想知道怎么做。
老实说,在上了我的第一门数据科学在线课程后,我感到很失落。我花了大约一个月的时间用SCIKIT-Learn学习不同的算法和训练模型。
我根本不知道从那里去哪里。
我开始阅读关于那些没有硕士学位或任何专业资格就设法找到数据科学工作的人的文章。我意识到领域知识的重要性,以及借助可用数据解决问题的重要性。
我没有必要建立最精确的模型或理解模型背后的底层算法。
我意识到对我来说最重要的技能是利用数据解决问题的能力。这意味着我必须超越机器学习算法。
我选修了商业分析和ML工程课程。我花在学习代码上的时间比花在理论上的时间还要多。我花时间学习SQL和数据操作。
然后,我在网页刮擦的帮助下从在线站点收集了自己的数据。我用这些数据解决了一个问题,并用它构建了一个简单的机器学习web应用程序。
通过这种方式,我慢慢获得了成为端到端数据科学家所需的技能。
即使在我工作的数据分析团队中,如果有任何项目超出了我们日常工作的范围(需要外部数据收集或新算法的项目),我通常会被分配去做。
作为一个有抱负的数据科学家,有这么多的资源提供给你在网上。事实上,太多了,你不知道该从中选择什么。
然而,大部分的重点都放在模型构建上。
虽然了解建立和训练模型的基本原理是很重要的,但大多数可用的工作都要求你超越这一点。
真正的需求是对能够借助可用数据解决问题的人的需求。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10