以下是受此博客启发的KDnuggets民意调查结果:
放松!数据科学家不会在10年内灭绝,但角色会改变
随着人工智能的进步继续突飞猛进,在基线上获得数据科学已经变得越来越民主化。该领域的传统进入壁垒,如缺乏数据和计算能力,已经被扫除,不断涌现的新数据初创公司(有些公司每天只需一杯咖啡就能访问数据),所有强大的云计算都消除了对昂贵的现场硬件的需求。除了三位一体的先决条件之外,实现的技能和诀窍可以说已经成为数据科学中最普遍的方面。人们不需要看很远就能找到兜售口号的在线教程,如“在几秒钟内实现X模型”,“在几行代码内将Z方法应用于数据”。在一个数字世界里,即时满足已经成为游戏的名称。虽然提高可访问性在表面上并不有害,但在令人眼花缭乱的软件库和闪亮的新模型之下,数据科学的真正目的已经变得模糊,有时甚至被遗忘。因为它不是为了这样做而运行复杂的模型,也不是为了优化任意的性能度量,而是用作解决现实世界问题的工具。
一个简单但相关的例子是Iris数据集。有多少人用它来演示一个算法,而不留心思考萼片是什么,更不用说为什么我们要测量它的长度了?虽然对于可能更有兴趣在他们的曲目中添加一种新模式的初露头角的从业者来说,这些似乎是微不足道的考虑,但对于植物学家埃德加·安德森来说,这并不是微不足道的,他编目了所讨论的属性来理解鸢尾花的变异。尽管这是一个人为的例子,但它展示了一个简单的观点;主流变得更加专注于“做”数据科学,而不是“应用”数据科学。然而,这种失调并不是数据科学家衰落的原因,而是一种症状。为了了解问题的根源,我们必须后退一步,鸟瞰一下。
数据科学有一个奇怪的区别,它是少数几个让实践者没有领域的研究领域之一。药学专业的学生成为药剂师,法律专业的学生成为律师,会计专业的学生成为会计师。数据科学专业的学生因此必须成为数据科学家?但是什么的数据科学家?数据科学的广泛应用是一把双刃剑。一方面,它是一个强大的工具箱,可以应用于任何生成和捕获数据的行业。另一方面,这些工具的普遍适用性意味着用户很少会在此之前对所述行业有真正的领域知识。然而,在数据科学兴起的时候,这个问题并不重要,因为雇主们在没有完全理解它是什么以及如何将它完全集成到他们的公司中的情况下,就急于利用这项新生的技术。
然而,近十年后,企业和它们所处的环境都发生了变化。他们现在努力与以既定行业标准为基准的大型根深蒂固的团队一起实现数据科学的成熟度。迫切的招聘需求已经转向问题解决者和批判性思维者,他们了解业务、各自的行业及其利益相关者。导航几个软件包或反流几行代码的能力不再足够,数据科学从业者也不再被编码的能力所定义。no code、AutoML解决方案(如DataRobot、RapidMiner和Alteryx)的日益流行就证明了这一点。
数据科学家将在10年内灭绝(要么放弃),或者至少角色头衔将是。展望未来,被统称为数据科学的技能集将由新一代精通数据的业务专家和主题专家承担,他们能够用自己深刻的领域知识进行分析,无论他们是否会编码。他们的头衔将反映他们的专业知识,而不是他们展示专业知识的手段,无论是合规专家、产品经理还是投资分析师。我们不需要回头看很远就能找到历史性的先例。在电子表格出现的时候,数据输入专家是非常令人垂涎的,但现在,正如Cole Nussbaumer Knaflic(“用数据讲故事”的作者)恰当地观察到的那样,熟练使用Microsoft Office suite是最低限度的。在此之前,用打字机触摸打字的能力被认为是一项专业技能,然而随着个人计算机的可访问性,它也被认为是一项专业技能。
最后,对于那些考虑从事数据科学工作或开始学习的人来说,经常回顾一下你无疑会遇到的维恩图可能会对你有很好的帮助。它将数据科学描述为统计学、编程和领域知识的汇合。尽管每一个都占有相等份额的相交面积,但有些可能会保证比其他的更高的权重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06