以下是受此博客启发的KDnuggets民意调查结果:
放松!数据科学家不会在10年内灭绝,但角色会改变
随着人工智能的进步继续突飞猛进,在基线上获得数据科学已经变得越来越民主化。该领域的传统进入壁垒,如缺乏数据和计算能力,已经被扫除,不断涌现的新数据初创公司(有些公司每天只需一杯咖啡就能访问数据),所有强大的云计算都消除了对昂贵的现场硬件的需求。除了三位一体的先决条件之外,实现的技能和诀窍可以说已经成为数据科学中最普遍的方面。人们不需要看很远就能找到兜售口号的在线教程,如“在几秒钟内实现X模型”,“在几行代码内将Z方法应用于数据”。在一个数字世界里,即时满足已经成为游戏的名称。虽然提高可访问性在表面上并不有害,但在令人眼花缭乱的软件库和闪亮的新模型之下,数据科学的真正目的已经变得模糊,有时甚至被遗忘。因为它不是为了这样做而运行复杂的模型,也不是为了优化任意的性能度量,而是用作解决现实世界问题的工具。
一个简单但相关的例子是Iris数据集。有多少人用它来演示一个算法,而不留心思考萼片是什么,更不用说为什么我们要测量它的长度了?虽然对于可能更有兴趣在他们的曲目中添加一种新模式的初露头角的从业者来说,这些似乎是微不足道的考虑,但对于植物学家埃德加·安德森来说,这并不是微不足道的,他编目了所讨论的属性来理解鸢尾花的变异。尽管这是一个人为的例子,但它展示了一个简单的观点;主流变得更加专注于“做”数据科学,而不是“应用”数据科学。然而,这种失调并不是数据科学家衰落的原因,而是一种症状。为了了解问题的根源,我们必须后退一步,鸟瞰一下。
数据科学有一个奇怪的区别,它是少数几个让实践者没有领域的研究领域之一。药学专业的学生成为药剂师,法律专业的学生成为律师,会计专业的学生成为会计师。数据科学专业的学生因此必须成为数据科学家?但是什么的数据科学家?数据科学的广泛应用是一把双刃剑。一方面,它是一个强大的工具箱,可以应用于任何生成和捕获数据的行业。另一方面,这些工具的普遍适用性意味着用户很少会在此之前对所述行业有真正的领域知识。然而,在数据科学兴起的时候,这个问题并不重要,因为雇主们在没有完全理解它是什么以及如何将它完全集成到他们的公司中的情况下,就急于利用这项新生的技术。
然而,近十年后,企业和它们所处的环境都发生了变化。他们现在努力与以既定行业标准为基准的大型根深蒂固的团队一起实现数据科学的成熟度。迫切的招聘需求已经转向问题解决者和批判性思维者,他们了解业务、各自的行业及其利益相关者。导航几个软件包或反流几行代码的能力不再足够,数据科学从业者也不再被编码的能力所定义。no code、AutoML解决方案(如DataRobot、RapidMiner和Alteryx)的日益流行就证明了这一点。
数据科学家将在10年内灭绝(要么放弃),或者至少角色头衔将是。展望未来,被统称为数据科学的技能集将由新一代精通数据的业务专家和主题专家承担,他们能够用自己深刻的领域知识进行分析,无论他们是否会编码。他们的头衔将反映他们的专业知识,而不是他们展示专业知识的手段,无论是合规专家、产品经理还是投资分析师。我们不需要回头看很远就能找到历史性的先例。在电子表格出现的时候,数据输入专家是非常令人垂涎的,但现在,正如Cole Nussbaumer Knaflic(“用数据讲故事”的作者)恰当地观察到的那样,熟练使用Microsoft Office suite是最低限度的。在此之前,用打字机触摸打字的能力被认为是一项专业技能,然而随着个人计算机的可访问性,它也被认为是一项专业技能。
最后,对于那些考虑从事数据科学工作或开始学习的人来说,经常回顾一下你无疑会遇到的维恩图可能会对你有很好的帮助。它将数据科学描述为统计学、编程和领域知识的汇合。尽管每一个都占有相等份额的相交面积,但有些可能会保证比其他的更高的权重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25