数据分析师是世界上最受欢迎的专业人士之一。这些人借助数据帮助公司做出知情的商业决策。
现在有很多关于数据科学的炒作。
然而,数据科学的进入门槛非常高。这是一个竞争非常激烈的领域,每个来自不同教育背景的人都希望进入。
大多数数据科学职位都要求你拥有量化领域的研究生学位。然而,我认识的大多数数据分析师都来自完全无关的背景,也没有技术学位。
通过参加在线课程和新兵训练营,可以很容易地获得数据分析技能。学习曲线不像数据科学中那样陡峭,可以在更短的时间内学习。
即使您以前没有编程或技术经验,您也可以在短短几个月内获得成为数据分析师所需的技能。
在做了3个月的实习后,我收到了加入公司担任数据分析师的offer。
在本文中,我将描述我学习数据分析的步骤。找到这些资源并为自己创建路线图花了大量的试验和错误。
如果您遵循这些步骤,您可以在短短几个月内学习获得入门级数据分析工作所需的技能。你甚至可以做得比六个月更快,这取决于你每天花在学习上的时间。
要进入分析领域,你首先需要学习一门编程语言。Python和R是该领域中最常用的两种语言。
如果您刚刚起步,我强烈建议您学习Python。它比R更方便用户,也更容易拿起。Python还有大量的库,这些库使数据预处理等任务变得更加容易。
Python的使用也比R更广泛。如果将来要进入web开发或机器学习等领域,您将不需要学习新的语言。
a)2020年完整的Python训练营:从零到Python中的英雄:
如果你是一个完全没有编程经验的初学者,请参加这门课程。本课程将带您学习Python语法的基础知识,并学习变量、条件语句和循环。本课程由Udemy上最好的导师之一何塞·波蒂利亚教授。
b)学习Python进行数据分析和可视化:
一旦您了解了Python的基础知识和语法,就可以开始学习如何使用它分析数据。本课程将引导您浏览特定于数据分析的库,如Numpy、Matplotlib、Pandas和Seaborn。
在学习这两门课程后,您将对Python及其在分析领域的使用有一个基本的了解。然后,我建议继续练习这门语言。
要获得实践,请访问编码挑战网站,如HackerRank和LeetCode。我强烈建议HackerRank。他们有不同难度的编码挑战。从最简单的开始,然后努力向上。
当您开始从事分析工作时,您每天都会面临编程问题。像HackerRank这样的网站将有助于提高你解决问题的技能。
每天花大约4-5个小时解决Python HackerRank问题。这样做大约一个月,您的Python编程技能将足以找到一份工作。
SQL技能是获得一份分析工作所必需的。您的日常任务通常涉及从数据库中查询大量数据,并根据业务需求操作这些数据。
许多公司将SQL与其他框架集成,并希望您了解如何使用这些框架查询数据。
SQL可以在Python、Scala和Hadoop等语言中使用。这将根据您工作的公司而有所不同。但是,如果您了解用于数据操作的SQL,您将能够轻松地使用其他SQL集成框架。
我通过Udacity的tookthisfree课程来学习用于数据分析的SQL。DataCamp还有一个用于data analyticstrack的PopulationSQL可以试用。
您将需要知道如何分析数据并从中获得洞察力。知道如何编码或查询数据是不够的。您需要能够用这些数据回答问题和解决问题。
要学习Python中的数据分析,您可以参加我上面提到的Thisudemy课程。您还可以追求数据分析师的职业轨迹DataCamp。
从数据中获得洞察力之后,您应该能够呈现这些洞察力。涉众需要根据您所展示的洞察力做出业务决策,因此您需要确保您的展示清晰简洁。
这些见解通常借助数据可视化工具来呈现。可视化可以使用Excel、Python库或像Tableau这样的商业智能工具创建。
如果你想成为一名数据分析师,我建议学习Tableau。它是最常用的报告工具之一,受到大多数雇主的追捧。
Kirill Eremenko的这门课程是学习画面的最好资源之一。
完成前三个步骤后,您就已经具备了获得数据分析入门级工作的所有必要技能。
现在,你需要向潜在的雇主展示这些技能。如果你不是来自技术背景,你需要向招聘人员展示你有成为分析师所需的技能。
为此,我强烈建议建立一个数据分析组合。在Tableau中构建仪表板,使用Python分析Kaggle数据集,并撰写关于新技能的文章。
你可以在这里看一下我的投资组合。
以下是您可以在投资组合中展示的一些数据分析项目示例:
在你的简历上展示这样的项目会让你在潜在的雇主面前脱颖而出。
确保围绕你创建的项目讲述故事。记录您创建项目所采取的每一个步骤,并写一篇关于它的文章。你甚至可以创建自己的博客并发布这些文章。
这增加了你的文章落入他人手中的几率,这意味着它被潜在雇主看到的几率更高。
如果你想进入数据行业,数据分析是一个很好的起点。与机器学习等领域相比,它的进入壁垒较低。
如果你喜欢讲故事和创建演示文稿,你会喜欢在分析领域工作。你的日常工作将包括向非技术人员解释技术概念,你将需要努力提高你的沟通技能。
请记住,数据分析是人们一生都在努力学习的领域。即使是成为一名分析师所需的个人技能也需要一辈子才能学会,所以不可能在短短几个月内掌握。
本文只针对试图获得数据分析入门级工作的人。
按照上面的步骤,我在6个月左右的时间里找到了一份分析方面的工作。即使你以前没有数据经验,每天投入大约5-6个小时,你也能做到。
教育是改变世界最有力的武器
-纳尔逊·曼德拉
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31