因为有大量的竞争来获得数据科学家的工作。
找一份数据科学工作比以往任何时候都更难--如何将它转化为你的优势-kdnuggets
尽管许多有抱负的数据科学家发现,找到一份工作变得比以前更加困难…
因为有一种疯狂的冲动。每一种工程师、科学家和工作人员都称自己为数据科学家。
为什么有这么多“冒牌”数据科学家?
你有没有注意到有多少人突然自称为数据科学家?你的邻居,你在一个…
遇到的女孩
因为你不确定你能不能在这里面切牙。请记住,冒名顶替综合症在数据科学中非常活跃。
如何管理数据科学中的冒名顶替综合症
如果他们发现你一无所知怎么办?
我可以继续,但你明白…
那么,你如何将自己与群众区分开来呢?我不知道你是否可以,但我可以告诉你几个指针来测试你自己。这就是这篇文章的内容。
问自己几个问题,数数是的答案的数量。你越做这些,就越脱离群众。
If you are not a beginner but consider yourself to be at a somewhat mature stage as a data scientist, do you do these?
不要把你所有的时间和精力都花在分析更大的数据集或实验最新的深度学习模型上。
留出至少25%的时间来学习做一两件在任何地方、任何组织、任何情况下都很有价值的事情,
正如您所看到的,这些习惯相当容易养成和实践,即它们不需要繁重的工作、多年的统计学背景或深度机器学习知识方面的高级专业知识。
但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
想象一下你在面试中的样子。如果你对上面的问题有很多肯定的答案,你可以向你的面试官提到,
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
它们表明您对数据科学问题好奇。
它们表明你阅读,你分析,你交流。您创建和文档供其他人创建。
它们表明,您的思考超越了笔记本和分类准确性,而达到了业务增值和客户同理心的领域。哪家公司不会喜欢这样的应聘者?
… these habits are fairly easy to develop and practice i.e. they do not need backbreaking work, years-long background in statistics, or advanced expertise in deep machine learning knowledge. 但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
有这么多伟大的工具和资源来帮助你练习。在一篇小文章的篇幅里,甚至不可能列出其中的一小部分。我只是展示一些有代表性的例子。关键的想法是沿着这些思路探索,并为自己发现帮助艾滋病。
只使用Jupyter笔记本构建可安装的软件包
nbdev:使用Jupyter笔记本实现所有功能
如何制作出色的Python包-一步一步
2021年如何制作一个超赞的Python包
了解如何在自己的ML模型和模块开发中集成单元测试原则
Pytest for Machine Learning-一个简单的基于示例的教程
了解如何在数据科学任务中集成面向对象编程原则
面向数据科学家的面向对象编程:构建您的ML估计器
使用简单的Python脚本构建交互式web应用程序-不需要HTML/CSS知识
PyWeBio:使用Python以脚本方式编写交互式Web应用程序
直接从Jupyter笔记本上写出完整的编程和技术书籍。也可将此用于文档构建。
带有Jupyter的书籍
理解实际分析问题的多方面复杂性,以及它不仅仅是建模和预测
为什么业务分析问题需要您的所有数据科学技能
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
学习时不要跳台阶。跟着步骤走。
不要只专注于阅读最新的深度学习技巧或关于最新Python库的博客文章。在每一个机会,阅读该行业的顶级论坛和好书的董事会主题。我喜欢的一些书籍和论坛如下,
随着越来越多的企业采用和接受这些变革性技术,数据科学以及机器学习和人工智能的相关技能目前在就业市场上的需求非常高。人才的需求和供给双方之间存在着大量的竞争和沟通不畅。
一个亟待解决的问题是:如何从一百个共同申请者中区分自己?
我们列出了一些关键问题,你可以问自己,并评估你在一些技能和习惯上的独特性,这些技能和习惯使你与众不同。我们展示了一些想象中的对话片段,你可以在面试板上展示这些技能和习惯。我们还提供了一份资源的入围名单,以帮助您开始这些。
我们列出了几种参加MOOCs的方法,并建议阅读参考资料。
祝你在你的数据科学之旅中一切顺利…
您可以查看作者的GitHub存储库以获取机器学习和数据科学方面的代码、思想和资源。如果你和我一样,对人工智能/机器学习/数据科学充满热情,请在LinkedIn上添加我或在Twitter上关注我。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14