最好的技术人员解决错误的问题注定会失败和沮丧。然而,我们经常看到伟大的Python开发人员和SQL专家创造出出色的技术,但对业务几乎没有什么价值。在某些情况下,情况要糟糕得多。这些解决方案的价值并不值得商榷,而是耗尽了资源,混淆了业务流程。作为数据工程师,我们有责任充分理解我们的解决方案所支持的业务流程。
作为高级数据工程师,我们应该非常了解业务,我们建议如何提高效率和增强工作。一个大胆的声明,但我会舒舒服服地死在这把剑上,和任何不同意的人战斗。当然,打个比喻,因为我没有剑,与其说是斗士,不如说是个情人。关键是,我们需要了解业务,有一个重要的工具可以帮助我们实现这一目标。
在我们开始之前,读一下朱利安·科维齐克的这句精彩的话,它简洁地指出了问题:
“如今,通过理解底层数据和与之相伴随的业务流程来塑造数据似乎不如移动数据的能力重要。”
他在这里说的是,我们太忙于将数据从那里转移到这里,以及我们可以使用的所有酷的工具,我们忘记了我们首先做这一切的原因。数据工程师从多个来源收集原始数据,并创建可供人和机器有效使用的可消耗软件包。对我们的消费者来说,介于两者之间的一切都是一个黑匣子。为什么我们把大部分时间和精力都花在黑匣子上,而不是消耗性的包装上?
愤世嫉俗的观点会说,这是因为黑匣子是有趣的部分。虽然这可能是等式中的一个因素,但我相信我们中的许多人只是不太了解业务流程,无法有效地将时间花在改进可消费软件包上。让我说清楚。更好地理解业务是你的工作和责任。不容易啊。在一个完美的世界里,我们会有很好的文档可以依赖,但是…嗯…你知道的。这就是我们数据工程工具箱中最重要的工具。
问题。就在那儿。问题。很多。好的。坏的。尴尬的那些。所有的问题!这对你来说足够强调了吗?你想从好到好吗?问问题并充分理解您支持的业务流程。我怎么强调都不为过,与一个只关心技术的数据工程师交谈是多么令人沮丧,而我是一名数据工程师。想象一下,你是一名财务分析师、人力资源主管或销售人员。他们需要可消耗的数据包,但可能不理解技术术语。除了他们使用的特定工具之外,他们可能对技术知之甚少。
因此,仅仅提出问题是不够好的。相反,我们需要用企业理解的语言提出正确的问题。忘掉表、数据源和主键吧。这些事情来得更晚,往往是由对更多人的更多问题决定的。相反,询问人们在日常工作中做了什么。询问业务目标是什么。工作如何通过各种系统流动。问,直到你完全理解公司使用的业务流程。然后记录下来。
编写业务文档。当然,做这件事是他们的工作,但你才是需要它的人。创建流程图,包括业务使用的任何工具。包括人们与流程交互的地方。然后和业务一起审查,问更多的问题。您可能会发现没有一个人能理解所有的事情,所以您将与几个人交谈并最终统一业务流程。您编写的文档将成为业务中有价值的工件。砰!你对公司来说是无价之宝。我敢说,你刚成为一名高级数据工程师?
作为数据工程师,理解我们的解决方案支持的业务流程是我们的责任。如果不充分了解这些过程,我们注定会受挫和失败。我们生活的这个不完美的世界通常没有很好的记录,而我们数据工程师是需要弄清楚这一切的人。通过提出大量的问题,我们可以更好地理解我们的解决方案支持的业务流程,这使我们能够不断改进我们工作的影响。所以,开始吧。质疑一切!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20