随着数据在业务中扮演着越来越重要的角色,数据专业人员的需求仍然很高。尽管数据科学劳动力短缺,但这个领域可能是一个竞争激烈的领域。如果员工想增加他们获得理想职位的机会,他们可以在简历上增加一些变化。
简历上的多样性体现了灵活性,这是当今数据专业人员的一项基本技能。它可能是一个很好的简历助推器,但从一个职位跳到另一个职位来改善简历是不实际的。谢天谢地,申请人可以增加多样性,而不需要承担许多新的工作。
以下是数据专业人员在简历中添加变化的七种方法。
职位头衔不是简历上唯一能展示多样性的东西。如果申请人名下有任何出版物,如书籍、期刊文章或白皮书,他们应该列出这些出版物。这些对潜在的雇主来说是一个例子,表明一个工人对他们的领域是认真的。
记住,每件事都应该与手头的具体工作相关。数据相关职位的简历中只应显示与数据相关的出版物。如果工人没有任何相关的出版作品,他们可以寻找机会成为其中的一部分。
在整个职业生涯中,数据专业人员将从事各种项目,无论是工作还是业余爱好。无论它们是令人印象深刻的个人追求还是为公司节省资金的事件,这些项目都是相关技能的例子。提到具体的项目而不是一般的工作描述也会给重复的简历增加变化。
任何展示不同方法或技能,或特别令人印象深刻的东西都值得一提。对这些项目的描述不需要很长,应该集中在使它们独特的地方。最好用数字和指标来表达这些成就,这些数字和指标比语言更突出。
申请者的当前公司可能有项目,可以为简历添加变化。当数据专业人员工作时,他们应该寻找任何学习或使用新技能的机会。自愿成为这些任务的一部分将有助于建立一份更令人印象深刻的简历。
数据专业人士可以向他们的经理询问任何这样的机会,或者密切关注这些机会。无论是在一个特殊的公司项目上工作,还是为部门开创一个新的流程,这些出现的频率比一些人想象的要高。
数据专业人员不必将自己局限于当前职位上可用的工作。数据科学家和分析师是急需的员工,所以他们可以从事自由职业来提升简历。自由职业项目使专业人员能够承担他们原本无法完成的任务,在没有另一份全职工作的情况下增加了变化。
由于这种类型的工作使专业人士能够选择他们自己的时间,它可以适应他们目前的时间表。工人不需要承担太多额外的工作。仅仅几个项目就可以增加一些所需的多样性。
如果专业人士想找到另一个能增加多样性的全职职位,他们可以考虑在国际上工作。与美国公司相比,国际公司更有可能有不同的项目。即使他们没有,与不同的文化合作也显示了灵活性。
国际上有几种工作方式,所以工人们无论现状如何都能找到一些东西。数据专业人员甚至可以为国际公司找到合同工作,这样他们就可以在其他工作的基础上完成这项工作。
即使通过各种职位,数据专业人员可能会发现他们的日常工作看起来相似。这些员工仍然可以找到机会,通过提及他们积累的软技能,在简历中增加变化。即使以数据为中心的工作从一个职位到另一个职位看起来都一样,不同的工作环境可能会发展出各种软技能。
处理数字并不是数据专业人员工作中唯一重要的技能。他们还需要将结果传达给不同的受众,在团队中工作,并具有适应性。突出这些软技能而不是看起来更相似的任务会增加简历的多样性。
招聘经理通常只有30秒的时间来查看求职者的简历。数据专业人员需要在不占用太多空间的情况下展示多样性。对所有描述符的具体说明也迫使申请者专注于使每个条目唯一的东西。
对不同的数据位置进行一般的、缩小的查看可能会使它们看起来都一样。对每一个都进行具体说明会突出它们的不同之处。
与数据相关的工作有很多种,即使它可能不会立即显现出来。希望改进简历的数据专业人员可以按照以下步骤来展示这种变化。然后,他们可以成为一个更有吸引力的候选人,在一个已经很有需求的领域。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20