
在现代信息技术时代,数据科学自学有大量的免费资源。事实上,您甚至可以从无数可用资源中设计自己的数据科学课程。虽然从课程工作中获得的知识对于打好数据科学的基础是必不可少的,但你需要记住数据科学是一个实践性很强的领域。因此,动手技能非常重要,尤其是如果你有兴趣在学术界以外的地方作为一名实践数据科学家工作的话。
本文将讨论4个重要的平台,这些平台将使您能够构建一个展示数据科学经验的投资组合。一个强大的投资组合会让你的雇主在竞争中占据优势,吸引最优秀的人才。请记住,有兴趣雇用你的雇主会要求你提供完成数据科学项目的证据。埃隆·马斯克(Elon Musk)的这句名言概括了包括数据科学在内的任何技术学科的雇主的心态:
“一般情况下,寻找能证明特殊能力的东西。我甚至不在乎某人是否毕业于大学或高中或其他什么…他们是否制造了一些真正令人印象深刻的设备?赢得一些真正艰苦的比赛?想出什么好主意了吗?解决一些非常棘手的问题?“
一个突出完成的项目、认可和奖项列表的强有力的投资组合将作为你在数据科学方面能力的证据。
在深入研究构建良好的数据科学组合的主题之前,让我们首先讨论数据科学组合重要的5个原因。
现在让我们讨论创建数据科学组合的4个重要平台。
1。GitHub
GitHub是一个非常有用的展示数据科学项目的平台。作为一个数据科学的渴望者,GitHub应该作为您在整个数据科学旅程中作为已完成项目的存储库使用的第一个平台。这些项目可以包括每周任务中的项目或顶点项目。这个平台使您能够与其他数据科学家或数据科学的渴望者共享您的代码。对雇用你感兴趣的雇主会检查你的GitHub投资组合,评估你已经完成的一些项目。因此,在GitHub上构建一个非常强大和专业的投资组合非常重要。
要建立一个GitHub投资组合,首先要做的是创建一个GitHub帐户。一旦您的帐户创建,您可以继续编辑您的个人资料。当编辑你的个人资料时,添加一个简短的传记和一张专业的个人资料图片是个好主意。您可以在这里找到一个GitHub概要文件的示例:https://GitHub.com/bot13956。
现在让我们假设您已经完成了一个重要的数据科学项目,并且希望为您的项目创建一个GitHub存储库。
创建存储库的提示:确保为存储库选择合适的标题。然后包括一个自述文件,以提供项目内容的概要。然后您可以上传您的项目文件,包括数据集、Jupyter笔记本和示例输出。
下面是一个用于机器学习项目的GitHub存储库的示例:
存储库名称:bot13956/ml_model_for_predicting_ships_crew_size
存储库URL:https://github.com/bot13956/ml_model_for_predicting_ships_crew_size
自述文件:
ML_Model_for_Predicting_Ships_Crew_Size Author: Benjamin O. Tayo Date: 4/8/2019 We build a simple model using the cruise_ship_info.csv data set for predicting a ship's crew size. This project is organized as follows: (a) data preprocessing and variable selection; (b) basic regression model; (c) hyper-parameters tuning; and (d) techniques for dimensionality reduction. cruise_ship_info.csv: dataset used for model building. Ship_Crew_Size_ML_Model.ipynb: the Jupyter notebook containing code.
您可以从示例自述文件中看到,该文件很好地概述了项目的全部内容,包括目标和目的、数据集以及包含代码的Jupyter笔记本文件。在准备存储库时,请始终记住,由于它是公共的,其他用户将可以访问它,因此您希望以易于理解的方式准备它。
2。Kaggle
Kaggle是世界上最大的数据科学社区,拥有强大的工具和资源来帮助您实现数据科学目标。Kaggle允许用户查找和发布数据集,在基于Web的数据科学环境中探索和构建模型,与其他数据科学家和机器学习工程师合作,并参加解决数据科学挑战的竞赛。在此平台上,您可以访问数据集、课程、笔记本和比赛。同样,作为一个初学者,你必须创建一个帐户,然后设置你的个人资料,包括一张个人资料图片和一个简短的个人简历。
加入Kaggle的主要目的之一是与其他数据科学专业人员建立网络。无论您是数据科学新手还是经验丰富的数据科学家,您都可以在Kaggle上找到一个合适的论坛,允许您发现内容并围绕您感兴趣的主题进行讨论。你的最终目标应该是进入并参与在这个平台上发起的数据科学竞赛。因为大多数比赛鼓励团队合作,所以与其他数据科学领域的有志之士建立网络是很重要的,他们可以作为Kaggle challenge比赛的团队成员。当您参加Kaggle竞赛时,您可以在您的公共配置文件上展示您完成的项目,包括您的数据集、Jupyter笔记本和项目报告。
3。LinkedIn
LinkedIn是一个非常强大的平台,可以展示您的技能,并与其他数据科学专业人士和组织建立联系。LinkedIn现在是发布数据科学职位和招聘数据科学家的最著名平台之一。事实上,我通过LinkedIn得到了许多数据科学方面的采访。
确保您的个人资料始终是最新的。列出你的数据科学技能集,以及你的经验,包括你完成的项目。也列出奖项和荣誉是值得的。你还想让招聘人员知道你正在积极寻找工作。此外,在LinkedIn上,您希望通过关注数据科学影响者和出版物,如KDnuggets、走向数据科学和走向人工智能,来保持最新的信息。这些公司发布关于各种主题的有趣的数据科学文章的更新,包括机器学习、深度学习和人工智能。
下面是我在LinkedIn上发帖的例子:https://www.LinkedIn.com/in/benjamin-o-tayo-ph-d-a2717511/detail/recent-activity/shares/
4。中等
Medium现在被认为是投资组合建设和网络建设发展最快的平台之一。如果您有兴趣使用这个平台来建立投资组合,第一步将是创建一个中等帐户。您可以创建免费帐户或会员帐户。对于一个免费的帐户,您每月可以访问的会员文章的数量是有限制的。一个会员帐户需要每月5美元或50美元/年的订阅费。有关成为Medium会员的更多信息,请访问以下站点:https://Medium.com/membership。
一旦您创建了一个帐户,您就可以继续创建一个配置文件。确保包括一张专业图片和一个简短的个人简历。下面是一个中等配置文件的示例:https://Medium.com/@benjaminobi。
在Medium上,与其他数据科学专业人员建立网络的一个好方法是成为追随者。您还可以关注专门针对数据科学的特定媒体出版物。两个顶级数据科学出版物是《面向数据科学》和《面向人工智能》。
在媒体上增强你的投资组合的最好方法之一是成为一名媒体作家。
写媒介文章有5个主要优点:
如果您有兴趣成为一名数据科学媒体作家,这里有一些可以让您入门的资源:
在媒体上写数据科学博客初学者指南
为您的数据科学文章选择正确的特征图像
总之,我们讨论了可以用于构建数据科学组合的4个重要平台。投资组合是展示您的技能和与其他数据科学专业人员建立网络的一种非常重要的方式。一个好的投资组合不仅能帮助你跟上这个领域的最新发展,还能提高你在潜在招聘者面前的知名度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15