作者尤金·颜,亚马逊应用科学家
“与其手动检查我们的数据,为什么不试试领英的做法呢?它帮助他们实现了95%的准确率和80%的召回率。“
然后我的队友分享了如何使用k-最近邻来识别不一致的标签(在职位名称中)。然后,LinkedIn在一致的标签上训练支持向量机(SVM);然后用支持向量机对不一致的标签进行更新。这帮助他们在职称分类器上达到95%的精确度。
这个建议在我们的讨论中是最有用的。对它的跟踪导致我们的产品分类器的最终准确率达到95%。我问她,她是如何贡献出这种批判性的见解的。“哦,我只是偶尔看看报纸。”她回答。具体来说,她每周都会读1-2篇论文,通常是围绕团队正在研究的主题。
通过阅读论文,我们能够了解其他人(例如LinkedIn)发现哪些有用(或者不有用)。然后我们可以适应他们的方法,而不必重新发明火箭。这有助于我们以更少的时间和精力交付工作解决方案。
如果说我比别人看得更远,那是因为我站在巨人的肩膀上。
-艾萨克·牛顿
阅读论文还拓宽了我们的视野。尽管我们可能在数据科学的狭隘领域工作,但切向研究的发展往往是有帮助的。例如,Word嵌入和graphshave的思想在推荐系统中很有用。同样,来自计算机视觉的思想--如迁移学习和数据增强--对自然语言处理(NLP)有帮助。
阅读论文还使我们了解最新情况。在过去的十年里,自然语言处理领域取得了长足的进步。尽管如此,通过阅读最关键的10篇左右的论文,我们可以很快跟上速度。通过了解最新情况,我们在工作中变得更有效,从而需要更少的时间和精力。然后我们有更多的时间阅读和学习,导致一个良性循环。
如果我们开始养成这个习惯,我们可以阅读任何我们感兴趣的东西--大多数论文都会有一些东西教我们。阅读我们感兴趣的话题也会更容易养成习惯。
我们也可以根据实用性来选择论文。例如,我们可能需要快速理解一个项目的域。在开始一个项目之前,我几乎总是留出时间进行文献综述。花几天时间研究论文可以节省几周甚至几个月的死胡同和不必要的重新发明轮子。
建议也是确定要阅读的有用论文的方便方法。一个黑客是在社交媒体上关注我们崇拜的人,或者订阅精心策划的时事通讯--我发现这些来源的信息噪声比很高。
我读什么报纸?出于实用性,我读的多是与工作有关的论文。这使我能够立即应用我所读到的知识,从而加强我的学习。在工作之外,我对序列感兴趣,并倾向于阅读强化学习。我特别喜欢分享什么有效什么无效的论文,比如通过消融研究。这包括关于Word2VEC、BERT和T5的论文。
在谷歌搜索“如何阅读论文”会返回无数有用的结果。但如果你觉得它势不可挡,这里有几个我发现很有帮助的:
我的方法类似于三遍法。在下面的例子中,我将分享我是如何阅读几篇recsys的论文来了解新颖性、多样性和偶然性的度量标准的。等等。
在第一遍中,我扫描摘要以了解论文是否有我需要的内容,如果有,我浏览标题以确定问题陈述、方法和结果。在这个例子中,我专门寻找如何计算各种度量的公式。我给我的单子上的所有文件一个第一关(并拒绝开始第二关,直到我完成了单子)。在本例中,大约一半的论文进行了第二次传递。
在第二遍中,我再次阅读每一篇论文,并突出显示相关章节。这有助于我在以后参考论文时迅速发现重要的部分。然后,我为每篇论文做笔记。在本例中,注释主要围绕度量(即,方法、公式)。如果是一个应用程序的文献综述(例如,recsys、产品分类、欺诈检测),说明将侧重于方法、系统设计和结果。
对于大多数论文来说,第二次通过就足够了。我已经捕获了关键信息,如果需要,可以在未来参考它。尽管如此,如果我读论文作为文献综述的一部分,或者如果我想巩固我的知识,我有时会做第三步。
阅读只为心灵提供知识材料;是思考使我们读到的东西成为我们的。
-约翰·洛克
在第三关中,我将论文中常见的概念综合成自己的注释。各种论文都有自己的方法来衡量新颖性、多样性、偶然性等,我把它们合并成一个音符,并比较它们的利弊。在这样做的时候,我经常发现笔记和知识中的空白,不得不重温原始论文。
最后,如果我认为它对其他人有用,我会写出我所学到的并在网上发布。相对于从头开始,有我的笔记作为参考让写作容易得多。这导致了诸如:
在深入你的下一个项目之前,花一两天时间浏览几篇相关的论文。我相信从中长期来看,这将为您节省时间和精力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06