作者Shareef Shaik,有抱负的数据科学家
最近,我积极地开始找工作,转到数据科学,我没有任何正式的教育,如硕士或博士。AI/机器学习背景。我开始学习它完全是出于我自己的兴趣(不仅仅是因为炒作)。这是一个具有挑战性的轨道选择加入,特别是如果你同时在一些其他技术上工作。我开始了我的旅程,注册了许多MOOCs(大规模开放在线课程),并开始阅读多个博客。最初,它没有意义,最终在阅读了其他人的代码并用实时数据集弄脏了我的手之后。它慢慢地开始有意义了。
当我开始找工作时,开始了一个有趣的新故事。我在印度打开了一个顶级职位门户网站,开始寻找工作,我发现很少与我正在寻找的工作相关,但当我打开其中一个时,令我惊讶的是,他们提到的要求对我来说是新的。撇开传统的数据分析、机器学习和深度学习不谈,一些ETL工具和多种大数据技术被认为是必要的技能。我认为这没什么,因为现在每个公司都有自己对数据科学家的定义,并开设了另一份工作。这一次,它需要一些其他技术,如AWS、Azure和Power BI。
请记住,所有这些空缺都只标记在数据科学家下面。所有这些开放都有共同的需求,如机器学习算法、统计、数据分析、数据清洗和深度学习技术。除了这些技能之外,一些公司还希望候选人具备云(AWS、Azure或GCP)和数据可视化工具(如Tableau、Power BI)以及ETL工具(如SSIS)方面的知识。通常,这些技术更多地与数据分析师/数据工程师角色有关,但数据科学家角色仍在发展,并没有真正坚持特定的技能。
我确实理解这样一个事实,即公司寻找一个适合他们空缺职位的申请人,也有他们正在寻找的技术技能。这肯定会为公司节省时间和金钱,而不是再次提供培训。
所以,这里我有了一个有趣的想法,可以理解IT行业对数据科学家角色的实时期望,而不是MOOCs中通常教授的。
目标:我们将试图找出目前行业中最需要的技能和趋势。为此,我们将从作业门户中刮取数据。
注:整个分析是为印度市场的数据科学家角色而做的。
在这篇文章中,我们将试图找到几个重要问题的答案,每个数据科学求职者都会记住这些问题。
注意:您可以在结论部分找到完整代码的链接。
我从印度最大的求职门户网站--naukri.com收集了所有相关的求职信息,几乎每个求职者和招聘人员都使用这个网站。由于传统的BeautifulSoup方法在这个网站上不太好用,所以我使用了selenium-python来进行网页搜索。
免责声明:网上搜索纯粹是出于教育目的。
我们将为每项工作收集五个要素:角色、公司名称、经验、地点和关键技能。
刮擦代码:
[removed][removed]
在我们潜入之前,让我们做一些基本的预处理。
执行查找丢失值并删除它们的基本清理。
在处理重复数据时,我们需要非常小心,因为一个公司可能会多次发布相同的需求,因为该工作仍然空缺或,另一方面,该公司可能正在寻找具有相同需求的全新空缺。为了简单起见,我没有删除任何数据。
为了避免冗余,将所有字符串转换为小写,并标记了位置和技能列,因为这些列中有多个值。
这就是它如何处理预处理。
现在,我们只有一切可以开始了。
注意:如果您不是印度人,可以跳过此地点部分。
这是一个重要的步骤,因为在一些结果之后,工作门户通常开始显示一些与我们搜索的工作无关的其他工作。为了确保我们正在寻找正确的角色,让我们检查一下10个经常提到的角色。
终于,我们到了。你读这篇文章的主要原因。
让我们深入研究一下,更清楚地了解趋势。
你真的必须具备这篇文章中提到的所有技能才能找到工作吗?
好吧,不是真的,如果你的基础很强,列表中很少有工具在工作中容易找到。话虽如此,如果你只是在找工作,在简历上写上这些技能可能会帮助你获得面试机会。
如果你具备数据科学家必须具备的所有技能,那么最好的方法应该是开始参加面试,同时努力填补你理解上的空白,学习你认为会让你比其他候选人更有优势的工具/技术。
您可以在我的GitHub上找到完整的代码。您可以通过LinkedIn连接到我。
如果你发现这有帮助或有任何问题,请让我在评论中知道。
回头见.快乐的编码…!
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14