艾哈迈德·贝斯贝斯,AI工程师//博客作者//跑步者。
这是个人的观察,但我相信你们中的许多人在阅读这篇文章时会有同样的感受。
我是一名数据科学家,我喜欢我的工作,因为我认为它涵盖了各种相互依赖的领域,使它丰富和刺激。然而,我有时不得不与那些不完全理解组织或领域中这个角色的人打交道。坦率地说,这让我和我认识的许多人都有点沮丧。
在你继续阅读之前,我应该提到,我的目的不是阻止任何人对这个角色的渴望。我只是在陈述行业中普遍出现的一些负面方面,以及避免这些负面方面的可能解决方案。
原则上,这没问题。我也不明白其他人是怎么做的。然而,我不明白的是,一些当事人对了解你在帮助他们时做了什么完全缺乏兴趣和好奇心。我不是说他们应该了解神经网络的每一个小算法细节,但至少,他们应该了解你的方法,你解决问题的方法。有时,就好像你被委托做一项没有人关心的痛苦而肮脏的任务。
有些项目经理对你正在做的事情不感兴趣,除非你做完了。我想这些家伙把管理提升到了一个全新的水平。
哦!你是数据科学家?你一定对数字很在行。你为什么不看看我的文件,把数据处理一下呢?我听说你的“蟒蛇”能很快释放出魔力。在这里,去玩我的文件,完成后来看我。
-怎么办?
为了使每个人都在同一页上,一个解决方案是向没有技术背景的团队提供培训和意识。这需要通过内部研讨会、认证或MOOC订阅广泛的技术主题,如机器学习、深度学习或NLP的介绍性讲座。当建立这些领域的知识时,队友会变得积极主动,更多地参与到建立过程中。项目经理也意识到了挑战。
嗯,十年前,当这个领域开始出现时,这个方法非常有效,Hadoop和Spark这个词到处都是。你可以把你知道的所有流行语都堆在一起,希望得到一个大支票(它奏效了!)。
这已经不是2010年了。公司现在密切关注你愿意出售的东西。他们了解市场、竞争对手和挑战。他们几乎彻底扫描了所有东西。他们也知道什么是可行的,什么是不可行的。如果你没有脱颖而出,对你的价值主张和你的数据科学团队能带来的技术专长不够清楚,你最有可能失去这笔交易。
当然,尽管如此,总有一些穿西装的胆子很大的家伙发表这种鼓舞人心的声明:
让我们在这里和那里投入一点数据科学来加强我们的宣传,并让客户支付一大笔钱!
那不是很美吗?
— What to do?
不要表现得好像数据科学家会彻底改变和破坏您的组织。市场开始知道限制是什么。与市场接轨。
我们都知道这种感觉,而且很烂。你在努力工作中失败了,而另一个人展示了你的结果,并拿走了所有的功劳。这在任何地方都很常见,当您在数据科学团队中与业务伙伴协作时,这种情况会发生得更多。
如果你对团队很有价值,你的同事自然应该让你在利益相关者面前发光发热。然后你的声音被听到并参与决策过程。
然而,如果你觉得你被当作一种可互换的资源,或者被放在一边,在阴影下工作,为那些说话的人制作数字,也许是时候重新考虑你的立场了。
— What to do?
构建数据产品时,每个人都很重要。这不应该仅仅是我们告诉自己的一个说法。它必须体现在我们的会议、演示和日常关系中。
嗯,虽然听起来很诱人,但这并不像我们想象的那么容易。仅仅因为我们配备了这些工具并不一定意味着你可以期待立即的可操作的结果。这需要建立关于业务的知识,建立正确的直觉和假设。这需要时间,而且是一个学习的过程。
让我们处理数据并让它说话。
— What to do?
接受这样一个事实,即数据科学家必须花费大量时间了解业务并建立自己的直觉。这需要采访组织中的不同参与者,对数据进行各种分析,进行试验,失败,并获得持续的建设性反馈。
如果您还想为您的数据科学团队提供最好的条件,请确保至少有干净的数据管道,并有清晰的描述。
对于数据科学家的角色仍然存在着强烈的误解。不仅非技术高管,技术领域的其他同事也认为,数据科学家对Spark、Hadoop、SQL、TensorFlow、NLP、AWS、生产级应用程序、docker等都了如指掌。掌握这些工具是很棒的,但是这个过程需要几年的时间和大量的经验。
如果你是一名数据科学家,你申请的公司在一份申请中提到了所有这些技术词汇,请仔细检查该公司。它有可能对自己的数据战略没有明确的愿景,也没有对招聘的角色有明确的定义。
我们需要修复我们的数据问题。让我们雇佣一名数据科学家。
— What to do?
数据科学家并不总是您数据问题的最终解决方案-雇用前要仔细检查。也许你需要的是一个数据分析师或者一个后端开发人员。数据科学家不是精通一切的忍者。
如果你希望你的团队成功地构建你想要构建的任何东西,确保你周围有互补的技能。
在交付一级:
在管理层面:
这是基于来自朋友和同事的讨论和几个反馈的汇编。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16