
Matplotlib是Python中广泛使用的绘图库之一。它具有丰富的图形功能,可以用于绘制各种类型的图表,包括线条图、散点图、饼图、柱状图和热度图(heatmap)等。
热度图是一种用颜色来表示数据值大小的二维图表。通常,热度图用于可视化矩阵或表格式数据,并以不同的颜色来区分不同数值的数据。在本文中,我们将介绍如何使用matplotlib制作热度图。
首先,我们需要准备一个数据集来绘制热度图。这里我们将使用numpy包生成一个随机的 $ 10 times 10 $ 的矩阵来模拟一个数据集:
import numpy as np
data = np.random.rand(10, 10)
生成的 data
矩阵如下所示:
array([[0.82028575, 0.76881294, 0.71971194, 0.30491486, 0.67111979,
0.17771597, 0.80438331, 0.27302774, 0.18129643, 0.63314806],
[0.77143625, 0.63551487, 0.56306356, 0.41241424, 0.47234638,
0.30451328, 0.65190823, 0.47868446, 0.03420709, 0.39056214],
[0.88830154, 0.0510874 , 0.04667507, 0.63655448, 0.1009649 ,
0.53011341, 0.88860116, 0.8072012 , 0.2627727 , 0.16129027],
[0.03957677, 0.88986948, 0.29828759, 0.34845264, 0.07125663,
0.85638637, 0.08063718, 0.65769739, 0.41561651, 0.82219976],
[0.01306113, 0.02081601, 0.00762399, 0.52039123, 0.36600046,
0.24940888, 0.21817512, 0.94152895, 0.14410661, 0.5584188 ],
[0.18524447, 0.86325457, 0.70310962, 0.17384236, 0.56810572,
0.05814711, 0.14610126, 0.76581545, 0.36524594, 0.0123577 ],
[0.69838845, 0.54777405, 0.51271685, 0.74905936, 0.04087629,
0.60057023, 0.27027469, 0.7392686 , 0.04315166, 0.09859514],
[0.79271592, 0.69936978, 0.17137361, 0.63954807, 0.19399017,
0.38978258, 0.3345555 , 0.33223096, 0.03575185, 0.527903 ],
[0.20489367, 0.00811152, 0.35635863, 0.67832791, 0.0613843 ,
0.70448221, 0.85365584, 0.88137019, 0.14431136, 0.59657908],
[0.28042776, 0.765406 , 0.53737002, 0.89526902, 0.61241154,
0.2861603 , 0.69044175, 0.11878924, 0.75902697, 0.28845139]])
接下来
,我们可以使用matplotlib.pyplot.imshow()
函数来绘制热度图。此函数接受一个二维数组作为输入,并将其以颜色编码的形式显示出来。
import matplotlib.pyplot as plt
plt.imshow(data)
plt.show()
执行上述代码后,会生成一个如下所示的热度图:
在热度图中,每个单元格的颜色表示该单元格对应的值大小。默认情况下,imshow()
会根据数据范围自动选择颜色映射(colormap)。
我们可以通过设置cmap
参数指定不同的颜色映射。常用的颜色映射包括'viridis'、'plasma'和'magma'等。例如,如果使用'magma'颜色映射,则可以通过以下方式进行设置:
plt.imshow(data, cmap='magma')
plt.show()
运行上述代码会生成以下热度图:
通常,在绘制热度图时,我们可能需要添加行列标签以更好地解释数据。这可以通过设置xticks
和yticks
参数来完成。我们可以在imshow()
函数之前添加以下两行代码来设置行列标签:
plt.xticks(range(10), ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
plt.yticks(range(10), ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
上述代码将行列标签分别设置为字母'a'到'j'和大写字母'A'到'J'。然后再次运行imshow()
函数,就可以得到带有行列标签的热度图:
最后,我们可以通过添加一个颜色刻度表来说明热度图中每种颜色代表的数据值范围。这可以通过使用colorbar()
函数来完成。
plt.colorbar()
plt.show()
上述代码使热度图显示一个颜色刻度表,其中最小值为0.0,最大值为1.0。
本文介绍了如何使用matplotlib制作热度图。我们首先准备了一个随机的 $ 10 times 10 $ 的数据集,然后使用imshow()
函数绘制了热度图,设置了行列标签和颜色映射,并添加了一个颜色刻度表以说明颜色代表的数据值范围。
热度图是一种可视化工具,可用于探索数据集中的模式和趋势,或者比较不同数据集之间的差异。使用matplotlib绘制热度图非常简单且灵活,可以根据需求自由调整样式和布局,进而提高数据可视化的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10