
TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中选择并下载各种数据集。然而,在一些情况下,用户可能需要使用本地数据集进行模型训练和测试。在本文中,我们将介绍如何使用TFDS加载本地数据集。
为了加载本地数据集,我们需要做以下几个步骤:
1.准备数据集 2.创建TFDS数据集描述文件 3.使用描述文件加载数据集
首先,我们需要准备我们要使用的数据集。这通常涉及到收集、清洗和组织数据,以便可以轻松地访问数据。在本例中,我们将使用一个简单的示例数据集,其中包含数字图像和相应的标签。
该数据集的目录结构类似于以下内容:
data/ 0/ image1.png image2.png ... 1/ image1.png image2.png ... ...
在上面的目录结构中,每个数字目录代表一个唯一的标签,并包含与该标签相关联的所有图像。
接下来,我们需要创建一个TFDS数据集描述文件。该文件告诉TFDS如何读取和使用我们的本地数据集。描述文件通常是一个Python模块,其中包含有关数据集的元数据和函数,该函数将数据集加载到内存中。
在描述文件中,我们需要定义以下元数据:
1.名称:数据集的名称。 2.版本:数据集的版本号。 3.描述:数据集的简短描述。 4.特征:数据集的特征(例如,输入和输出的形状、数据类型等)。 5.拆分:数据集应该如何划分以进行训练、验证和测试。 6.下载URL(可选):如果数据集没有被打包成一个文件,请提供一个URL以下载数据集。
以下是一个简单的描述文件示例:
import tensorflow_datasets as tfds import os # Define the metadata for the dataset _DESCRIPTION = 'A dataset containing images of digits.' _VERSION = tfds.core.Version('1.0.0')
_NAME = 'my_dataset' def my_dataset(split): # Define the path to the data directory data_dir = os.path.join(os.getcwd(), 'data') # Define the classes classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] # Load the data dataset_builder = tfds.builder(_NAME)
dataset_builder.data_dir = data_dir
dataset_builder.add_images(
os.path.join(data_dir, '*/*'),
labels=classes,
) return dataset_builder.as_dataset(split=split)
在上面的代码中,我们定义了一个名为my_dataset的函数,该函数将数据集加载到内存中。我们还定义了元数据,包括数据集的名称、版本和描述,以及数据集的特征和拆分方式。
最后,我们使用tfds.builder()函数创建了一个dataset_builder对象,并使用add_images()方法将图像添加到数据集中。请注意,此处我们使用了data_dir变量来指定数据集的路径。如果您的数据集存在其他位置,则需要更改此变量的值以反映正确的路径。
使用上述描述文件,我们可以通过调用tfds.load()函数来加载本地数据集。这个函数需要传递三个参数:数据集名称、数据集拆分方式和描述文件的路径或模块。
以下是一个简单的例子:
import tensorflow_datasets as tfds # Load the data my_dataset = tfds.load(
name='my_dataset',
split='train',
data_dir='./data',
download=False,
with_info=True,
) # Print
在上面的代码中,我们使用tfds.load()函数来加载名为my_dataset的数据集,使用了train拆分并指定了数据集路径。此外,我们将with_info参数设置为True以获取有关数据集的元信息。
一旦数据集被加载到内存中,我们可以像其他TFDS数据集一样使用它进行训练或测试。
在本文中,我们介绍了如何使用TFDS加载本地数据集。首先,我们准备了数据集,并创建了一个TFDS数据集描述文件。然后,我们使用tfds.load()函数将数据集加载到内存中,并使用它来训练或测试模型。虽然这种方法可能需要更多的手动操作,但它允许用户使用自己的数据集进行机器学习,从而获得更好的控制和灵活性。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30