
PyTorch 是一种非常流行的深度学习框架,但是它不太适合在嵌入式系统和实时部署上使用,因为它在计算上的速度相对较慢。为了加速 PyTorch 模型的推理,可以使用 NVIDIA 的 TensorRT 库。TensorRT 旨在优化深度学习模型的推理,并提供了一个 API,可以将训练好的模型转换为 TensorRT 可以优化的格式。
本文将介绍如何将 PyTorch 模型转换为 TensorRT 格式,并使用 C++ 代码来加载和运行优化的模型。
在开始之前,您需要安装以下软件:
确保将这些软件正确安装并配置。
首先,需要将 PyTorch 模型转换为 ONNX 格式。ONNX 是一种开放式神经网络交换格式,可以使模型在不同框架之间移植。对于本示例,我们将使用 ResNet18 模型演示如何将其转换为 ONNX 格式。
import torch
import torchvision.models as models
# 加载模型
model = models.resnet18(pretrained=True)
model.eval()
# 创建一个虚拟输入张量
x = torch.randn(1, 3, 224, 224)
# 将模型转换为 ONNX 格式
torch.onnx.export(model, x, "resnet18.onnx", opset_version=11)
torch.onnx.export
函数将模型及其输入张量作为输入,并将其导出到指定的文件中。在此示例中,我们将该文件命名为 resnet18.onnx
。
接下来,我们将使用 TensorRT 转换器将 ONNX 模型转换为 TensorRT 格式。TensorRT 提供了一个用于转换 ONNX 模型的 Python API。
import tensorrt as trt
import onnx
# 加载 ONNX 模型
onnx_model = onnx.load("resnet18.onnx")
# 创建 TensorRT 引擎
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
# 解析 ONNX 模型
parser.parse(onnx_model.SerializeToString())
# 配置构建器
builder.max_batch_size = 1
builder.max_workspace_size = 1 << 30
# 构建引擎
engine = builder.build_cuda_engine(network)
# 保存 TensorRT 引擎
with open("resnet18.engine", "wb") as f:
f.write(engine.serialize())
在此示例中,我们首先加载 ONNX 模型,然后创建一个 TensorRT 构建器和网络。接下来,我们使用 TensorRT 的 ONNX 解析器解析 ONNX 模型。一旦解析完毕,我们就可以使用构建器构建引擎。最后,我们将引擎序列化并保存到磁盘上。
现在,我们已经将 PyTorch 模型转换为 TensorRT 格式并保存了 TensorRT 引擎。接下来,我们需要使用 C++ 代码加载并运行优化的模型。
以下是加载引擎并运行推理的简单示例:
#include
#include
#include "NvInfer.h"
using namespace nvinfer1;
int main()
{
// 读取 TensorRT
引擎
std::ifstream engineFile("resnet18.engine", std::ios::binary);
engineFile.seekg(0, engineFile.end);
int modelSize = engineFile.tellg();
engineFile.seekg(0, engineFile.beg);
std::vector
// 创建 TensorRT 的执行上下文
IRuntime* runtime = createInferRuntime(gLogger);
ICudaEngine* engine = runtime->deserializeCudaEngine(engineData.data(), modelSize);
IExecutionContext* context = engine->createExecutionContext();
// 创建输入和输出张量
const int batchSize = 1;
const int inputChannel = 3;
const int inputHeight = 224;
const int inputWidth = 224;
const int outputClass = 1000;
float inputData[batchSize * inputChannel * inputHeight * inputWidth];
float outputData[batchSize * outputClass];
// 设置输入数据
// ...
// 执行推理
void* bindings[] = {inputData, outputData};
context->execute(batchSize, bindings);
// 处理输出数据
// ...
// 清理内存
// ...
}
在此示例中,我们首先读取之前保存的 TensorRT 引擎。然后,我们使用 TensorRT 的运行时 API 创建一个执行上下文,并从引擎中创建一个 CUDA 引擎对象。
接下来,我们设置输入和输出张量,并将输入数据传递给模型。最后,我们使用执行上下文执行推理,并处理输出数据。
## 总结
在本文中,我们介绍了如何使用 TensorRT 将 PyTorch 模型转换为优化的 TensorRT 格式,并使用 C++ 代码加载和运行优化的模型。这种方法可以加速深度学习模型的推理速度,并使它们更适合于嵌入式系统和实时部署。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02