
在Python中,matplotlib是一个广泛使用的绘图库。它可以用于创建各种类型的图表,包括折线图、散点图、条形图等等。当我们需要将多个数据系列绘制在同一张图中时,往往需要给每个系列指定不同的颜色。下面我将介绍如何在matplotlib中为不同系列指定颜色。
在matplotlib中,我们可以使用颜色编码来指定线条或点的颜色。常用的颜色编码有以下几种:
我们可以通过在绘图函数中传入颜色编码的参数来指定线条或点的颜色。例如,下面的代码会将三个数据系列分别绘制成蓝色、绿色和红色的线条:
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y1 = [1, 2, 3, 4, 5]
y2 = [1, 4, 9, 16, 25]
y3 = [5, 4, 3, 2, 1]
plt.plot(x, y1, 'b')
plt.plot(x, y2, 'g')
plt.plot(x, y3, 'r')
plt.show()
上面的代码中,我们通过在plot()函数中传入'b'、'g'和'r'参数来指定了每个数据系列的颜色。
除了使用颜色编码外,我们还可以使用十六进制颜色码来指定颜色。使用这种方法,我们可以得到更加精细的颜色控制,因为我们可以指定任何RGB颜色的组合。
要使用十六进制颜色码,我们需要在plot()函数中传递一个color参数,并将其设置为一个字符串,该字符串以'#'开头,后面跟着六个十六进制数字(每两个代表一个RGB颜色通道)。例如,下面的代码会将三个数据系列分别绘制成蓝色、浅绿色和深红色的线条:
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y1 = [1, 2, 3, 4, 5]
y2 = [1, 4, 9, 16, 25]
y3 = [5, 4, 3, 2, 1]
plt.plot(x, y1, color='#0000ff')
plt.plot(x, y2, color='#00ff80')
plt.plot(x, y3, color='#800000')
plt.show()
上面的代码中,我们分别使用了'#0000ff'、'#00ff80'和'#800000'作为颜色参数,以分别为三个数据系列指定颜色。
如果我们需要为多个数据系列选择一组相关的颜色,我们可以使用Colormap。Colormap是matplotlib中的一个类,它将连续的数值映射到一组颜色中,并且支持多个预定义的颜色方案。
使用Colormap,我们可以为每个数据系列指定一个数值,然后使用Colormap将这些数值映射到一组颜色中。例如,下面的代码将使用Colormap为三个数据系列指定颜色:
import matplotlib.pyplot as plt import numpy as np
x = [1, 2, 3, 4, 5]
y1 = [1,
2, 3, 4, 5] y2 = [1, 4, 9, 16, 25] y3 = [5, 4, 3, 2, 1]
colors = np.linspace(0, 1, len([y1, y2, y3]))
cm = plt.cm.Spectral
plt.plot(x, y1, color=cm(colors[0])) plt.plot(x, y2, color=cm(colors[1])) plt.plot(x, y3, color=cm(colors[2]))
sm = plt.cm.ScalarMappable(cmap=cm, norm=plt.Normalize(vmin=0, vmax=len([y1, y2, y3])-1)) sm._A = [] plt.colorbar(sm)
plt.show()
上面的代码中,我们首先使用`np.linspace()`函数创建了一个序列,该序列的长度等于数据系列的数量。然后,我们使用`plt.cm.Spectral`颜色方案创建了一个Colormap对象,并将该对象存储在变量`cm`中。接下来,我们分别为每个数据系列指定了一个颜色,其中颜色是通过将对应位置的序列值映射到Colormap中得到的。最后,我们使用`plt.colorbar()`函数在图例中显示了颜色条。 ## 总结 在matplotlib中为不同数据系列指定颜色可以通过多种方式实现。我们可以使用颜色编码、十六进制颜色码或Colormap来指定颜色。使用Colormap时,我们可以为每个数据系列指定一个数值,并使用Colormap将这些数值映射到一组颜色中。无论选择哪种方法,都要确保为每个数据系列指定一个明显的颜色,以便轻松区分它们。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15