京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在逻辑回归中,分类变量是常见的特征。分类变量指的是只能取有限数量的离散值的变量,比如性别、国家等。在R语言中,处理分类变量有多种方法,下面将介绍其中几种常见的方法。
一、虚拟变量(dummy variable)
虚拟变量是将一个分类变量转换为多个二元变量的方法。对于一个具有m个不同取值的分类变量,可以创建m-1个虚拟变量。例如,对于一个二元分类变量“性别”,我们可以使用一个虚拟变量来表示它:当性别为男性时,虚拟变量为1,否则为0。如果我们采用两个虚拟变量,则一个表示男性,另一个表示女性。这里选用哪一个虚拟变量作为基准水平下的参考,我们可以根据需求自行设置。
在R中,我们可以使用“factor”函数将分类变量转换为因子(factors),然后利用“model.matrix”函数创建虚拟变量。以下是一个例子:
# 创建一个包含三个不同取值("A"、"B"和"C")的分类变量 x <- factor(c("A", "B", "C", "A", "B", "C")) # 创建虚拟变量 model.matrix(~ x)
运行结果如下:
(Intercept) xB xC
1 1 0 0
2 1 1 0
3 1 0 1
4 1 0 0
5 1 1 0
6 1 0 1
attr(,"assign")
[1] 0 1 2
attr(,"contrasts")
attr(,"contrasts")$x [1] "contr.treatment"
这里,“contr.treatment”表示使用第一个水平作为基准水平。因此,我们可以看出第一个观测值属于"A"类别,对应的虚拟变量为(1, 0, 0)。
二、特征缩放(feature scaling)
另一种处理分类变量的方法是特征缩放。特征缩放指的是将数据重新缩放到相同的尺度上,以便更好地比较和分析。在逻辑回归中,一种常见的特征缩放方法是最大-最小规范化,也称为离差标准化。
最大-最小规范化方法是将数值缩放到[0,1]区间内,具体步骤如下:
对每个特征,找到最小值(min)和最大值(max)。
对每个观测值,用以下公式计算缩放后的值:
$$ x_{scaled} = frac{x - x_{min}}{x_{max} - x_{min}} $$
在R中,可以使用以下代码对数据进行最大-最小规范化:
# 创建一个包含三个不同取值("A"、"B"和"C")的分类变量 x <- factor(c("A", "B", "C", "A", "B", "C")) # 将分类变量转换为数值变量并进行缩放 x_scaled <- (as.numeric(x) - min(as.numeric(x))) / (max(as.numeric(x)) - min(as.numeric(x)))
运行结果如下:
[1] 0.0 0.5 1.0 0.0 0.5 1.0
这里得到了一组缩放后的数值,它们都在[0,1]区间内。
三、哑变量编码(one-hot encoding)
哑变量编码是一种将分类变量转换为
数字变量的方法。与虚拟变量不同,哑变量编码会为每个分类变量取值分配一个唯一的整数编码,并将其转换为二进制数。每个编码都将对应一个新的变量。
例如,对于一个大小为3的分类变量"颜色"(红色、蓝色和绿色),我们可以使用哑变量编码来表示它:
| 颜色 | 编码 |
|---|---|
| 红色 | 001 |
| 蓝色 | 010 |
| 绿色 | 100 |
这里,每个编码都是三位数字,其中每个数字都是0或1,表示不同的颜色。在逻辑回归中,我们可以使用哑变量编码来处理分类变量。
在R中,可以使用以下代码进行哑变量编码:
# 创建一个包含三个不同取值("A"、"B"和"C")的分类变量 x <- factor(c("A", "B", "C", "A", "B", "C")) # 进行哑变量编码 model.matrix(~ x + 0)
这里,“+ 0”表示不包括截距项。运行结果如下:
xA xB xC
1 1 0 0
2 0 1 0
3 0 0 1
4 1 0 0
5 0 1 0
6 0 0 1
attr(,"assign")
[1] 1 2 3
attr(,"contrasts")
attr(,"contrasts")$x [1] "contr.treatment"
这里,每个编码都对应一个新的变量,并且没有截距项。第一个观测值属于"A"类别,并且对应的编码为(1, 0, 0)。
总结
在逻辑回归中,处理分类变量有多种方法。其中,虚拟变量是最常见的方法之一,它将分类变量转换为多个二元变量。特征缩放和哑变量编码也是处理分类变量的常见方法。选择哪种方法取决于数据的特点和分析的需求。在R语言中,我们可以使用“model.matrix”函数来进行虚拟变量和哑变量编码,也可以手动实现这些方法。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22