
随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多变量 LSTM 模型来进行时间序列预测,并且给出一个例子来预测未来一周的气温。
首先,我们需要准备数据集。在本例中,我们将使用包含多个变量的天气数据。这些变量包括温度、湿度、风速、降雨量等。我们将选取最近一年的数据,将其前80%作为训练集,后20%作为测试集。
接下来,我们需要对数据进行归一化处理。由于不同变量之间的值域差异较大,我们需要将其进行缩放到一个相同的范围内。这里我们将使用 Scikit-Learn 库中的MinMaxScaler函数。
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)
接下来,我们需要将数据转换成适合 LSTM 模型的格式。在多变量情况下,我们需要将每个时刻的输入向量扩展到包含多个变量。这里我们将以过去 30 天的数据为输入,预测未来一周的气温。
import numpy as np def create_dataset(X, y, time_steps=1):
Xs, ys = [], [] for i in range(len(X) - time_steps):
v = X[i:i + time_steps]
Xs.append(v)
ys.append(y[i + time_steps]) return np.array(Xs), np.array(ys)
TIME_STEPS = 30 X_train, y_train = create_dataset(train_data, train_data[:, 0], TIME_STEPS)
X_test, y_test = create_dataset(test_data, test_data[:, 0], TIME_STEPS)
接下来,我们可以构建 LSTM 模型。在本例中,我们将使用两层 LSTM 和一个全连接层。模型的输入形状应该是(samples, time_steps, features)。
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM
model = Sequential([
LSTM(units=64, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True),
LSTM(units=32, return_sequences=False),
Dense(units=1)])
在训练模型之前,我们需要定义损失函数和优化器,并编译模型。
model.compile(loss='mean_squared_error', optimizer='adam')
现在,我们可以开始训练模型。在每个 epoch 后,我们将记录训练集和测试集上的损失值,并可视化它们的变化。
history = model.fit(
X_train, y_train,
epochs=50,
batch_size=16,
validation_split=0.1,
verbose=1,
shuffle=False) import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
在模型训练完成后,我们可以对测试集进行预测,并将预测结果与真实值进行比较。
y_pred = model.predict(X_test)
plt.plot(y_test, label='true')
plt.plot(y_pred, label='predicted')
plt.legend()
plt.show()
最后,我们将使用训练好的模型来预测未来一周的气温。首先,我们需要获取最近 30 天的数据,然后使用模型进行预测。每次预测完之后,我们将新的预测值添加到输入序列中,用于下一次的预测。
X_last30
= test_data[-TIME_STEPS:] forecast = [] for i in range(7): y_pred_one = model.predict(X_last30.reshape(1, TIME_STEPS, -1)) forecast.append(y_pred_one[0, 0]) X_last30 = np.vstack((X_last30[1:], y_pred_one))
forecast = scaler.inverse_transform(np.array(forecast).reshape(-1, 1))
以上便是使用多变量 LSTM 进行时间序列预测的整个流程。通过训练模型,我们可以获得对未来数据的预测结果,并且不仅仅考虑了单一变量的影响,而是综合了多个变量的影响。当然,这只是一个简单的例子,实际应用中可能会涉及到更加复杂的数据和模型。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28