京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		作为一名大型语言模型,我的目标是提供简明扼要的答案。实际上,from bs4 import BeautifulSoup和import bs4都是可以使用的方式,但它们之间有一些微小的差别。
首先,让我们回顾一下Python中导入模块的两种方式:使用import语句导入整个模块,或使用from ... import ...语句导入模块的特定部分。从这个角度来看,bs4模块本身没有任何特殊的情况,所以我们可以使用这两种方式来导入它。
但是,当我们考虑到BeautifulSoup类时,我们可以看到在使用from语句的情况下,我们可以直接使用类名来创建一个新的对象:
from bs4 import BeautifulSoup
soup = BeautifulSoup('
	Hello World!
', 'html.parser')
与此相反,如果我们使用import语句,则需要先引用bs4模块,然后使用点符号来访问其中的类:
import bs4
soup = bs4.BeautifulSoup('
	Hello World!
', 'html.parser')
那么,为什么有人喜欢使用from语句而不是import语句呢?其中的原因是代码的可读性和易用性。
当我们使用from语句时,我们可以在代码中直接使用类名,而无需在其前面添加模块名。这样做可以使代码更简洁、易读和直观,因为我们可以立即知道用到的类是哪个模块中的:
from bs4 import BeautifulSoup
soup = BeautifulSoup('
	Hello World!
', 'html.parser')
另一方面,如果我们使用import语句,我们需要在每次使用类时都添加模块名。这会导致代码变得更冗长和难读,因为我们需要花费更多的时间来查看代码并找出用到的类属于哪个模块:
import bs4
soup = bs4.BeautifulSoup('
	Hello World!
', 'html.parser')
此外,使用from语句还可以防止命名空间污染。这是由于Python允许不同的模块定义具有相同名称的变量和函数。如果我们使用import语句并且我们的程序中存在其他与bs4模块中定义的变量或函数相同的名称,则可能会导致意想不到的结果。但如果我们使用from语句,则只导入了指定的类名,而不是整个模块,因此可以避免这种情况:
from math import sqrt print(sqrt(4)) # 2.0 # ... def sqrt(x): return x * x print(sqrt(4)) # 16 # ... import math print(math.sqrt(4)) # 2.0 # ... print(sqrt(4)) # 16 
最后,还有一些人认为使用from语句可以提高代码的执行速度。然而,这种差异在实践中通常是微不足道的,并且取决于程序的具体情况。
总之,虽然使用import bs4和from bs4 import BeautifulSoup都是可行的方式,但使用from语句通常更易读、易用、安全和优雅。
	推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28