
Pandas 是 Python 中非常流行的数据操作和分析库之一。其中,DataFrame 是 Pandas 提供的一个非常有用的数据结构,它类似于 SQL 中的表格,可以存储二维数组、CSV 文件、Excel 表格等数据。在 Pandas 中,有很多方法可以遍历 DataFrame,但是如何在遍历时修改数据呢?本文将探讨这个问题,并提供一些示例代码。
在 Pandas 中,有两种方式可以遍历 DataFrame,分别是使用 for 循环和 iterrows() 方法。下面我们分别介绍一下这两种方式。
使用 for 循环遍历 DataFrame 的方法很简单,只需要像遍历列表一样来遍历 DataFrame 即可。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): print(row['name'], row['age'])
输出结果为:
Alice 25 Bob 30 Charlie 35
在上面的代码中,我们通过 iterrows() 方法来遍历 DataFrame,其中 index 表示索引,row 表示每一行的数据。对于每一行的数据,我们可以通过 row['name'] 或者 row['age'] 来获取其中的某一个值。
iterrows() 方法是 Pandas 中另一种遍历 DataFrame 的方式。它返回一个迭代器,可以通过 for 循环来遍历 DataFrame 中的每一行数据。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): print(row['name'], row['age'])
输出结果为:
Alice 25 Bob 30 Charlie 35
在上面的代码中,我们同样使用了 iterrows() 方法来遍历 DataFrame。其中 index 表示索引,row 表示每一行数据。对于每一行数据,我们同样可以通过 row['name'] 或者 row['age'] 来获取其中的某一个值。
在遍历 DataFrame 的过程中,我们有时候需要对其中的数据进行修改。那么如何在遍历 DataFrame 的同时修改其中的数据呢?下面我们介绍两种方法:使用 at() 方法和使用 loc() 方法。
at() 方法可以用来选择 DataFrame 中的某一个元素,并且可以将其修改为指定的值。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) for index, row in df.iterrows(): if row['name'] == 'Alice':
df.at[index, 'age'] = 26 print(df)
输出结果为:
name age 0 Alice 26 1 Bob 30 2 Charlie 35
在上面的代码中,我们使用 for 循环遍历了 DataFrame,并且通过 if 语句来判断当前行的 name 是否为 'Alice'。如果是,我们就使用 at() 方法将该行的 age 修改为 26。
loc() 方法可以用来选取 DataFrame 中的一部分数据,并且可以对其进行修改。例如:
import pandas as pd
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]})
df.loc[df['name'] == 'Alice', 'age'] = 26 print(df)
输出结果为:
name age 0 Alice 26 1 Bob 30 2 Charlie 35
在上面的代码中,我们使用了 loc() 方法来选取 DataFrame 中 name 为 'Alice' 的那一行,并将其中的 age 修改为 26。
在
本文中,我们介绍了 Pandas 中遍历 DataFrame 的两种方式:使用 for 循环和 iterrows() 方法。同时,我们也介绍了两种在遍历时修改 DataFrame 数据的方法:使用 at() 方法和 loc() 方法。
需要注意的是,在遍历 DataFrame 并且修改其中的数据时,我们需要小心地处理索引值和行列标签,以避免出现错误结果。另外,在涉及到大规模数据处理时,尽可能使用向量化方法来进行操作,可以显著提高代码的效率。
总之,Pandas 提供了非常强大的数据操作功能。熟练掌握 DataFrame 的遍历和修改技巧,可以让我们更加高效地完成数据分析和处理任务。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02