在pandas中实现SQL查询中的CASE-WHEN-THEN-END功能是一项非常有用的技能,可以帮助我们快速和高效地处理数据。我将向你介绍如何在Pandas中实现此功能,并提供一些示例,以便您更好地理解。
首先,让我们先回顾一下SQL中的CASE-WHEN-THEN-END语句是什么。它通常用于根据某些条件对数据进行分类或转换。例如,假设我们有一个“订单”表,其中包含客户的姓名、订单金额和订单日期。我们可以使用CASE-WHEN-THEN-END语句将订单金额按照以下规则进行分类:
在SQL中,可以通过以下方式实现:
SELECT
customer_name,
order_amount,
CASE
WHEN order_amount < 100 class="hljs-string">'Small Order'
WHEN order_amount BETWEEN 100 AND 1000 THEN 'Regular Order'
WHEN order_amount > 1000 THEN 'Large Order'
END AS order_type,
order_date
FROM
orders;
现在让我们看看如何在pandas中实现相同的结果。Pandas提供了类似的功能,称为“np.select”。它将一个布尔数组列表作为第一个参数,每个布尔数组都代表一个条件。第二个参数是一个列表,其中包含与每个条件对应的值。如果没有任何条件被满足,则返回第三个参数作为默认值。以下是如何在Pandas中实现上述示例的代码:
import pandas as pd
import numpy as np
orders = pd.read_csv('orders.csv')
conditions = [
orders['order_amount'] < 100 class="hljs-string">'order_amount'] >= 100) & (orders['order_amount'] <= 1000),
orders['order_amount'] > 1000
]
choices = ['Small Order', 'Regular Order', 'Large Order']
orders['order_type'] = np.select(conditions, choices, default='Unknown')
print(orders)
在这个例子中,我们首先将数据集加载到一个名为“orders”的DataFrame中。然后,我们定义了三个条件,因此我们有三个布尔数组分别代表小额订单、普通订单和大额订单。接下来,我们定义了三个值列表,其中包含与每个条件相对应的值,即“Small Order”、“Regular Order”和“Large Order”。最后,我们使用np.select函数将这些条件和值传递给订单数据集,并将结果存储在名为“order_type”的新列中。
需要注意的是,我们还提供了一个默认值参数,以便处理任何未被满足的条件。在这个例子中,我们将默认值设置为“Unknown”。
此外,在Pandas中,也可以使用“pd.cut”函数来执行类似的操作。它允许我们将连续变量分成离散的区间,并将它们标记为相应的类别。例如,在上面的订单数据集中,我们可以使用以下代码将订单金额划分为三个等距的区间:
orders['order_type'] = pd.cut(orders['order_amount'], 3, labels=['Small Order', 'Regular Order', 'Large Order'])
在这种情况下,我们将订单金额分成三个等距的区间,并将每个区间标记为“Small Order”、“Regular Order”或“Large Order”。
总结起来,Pandas提供了多种实现SQL查询中CASE-WHEN-THEN-END功能的方法,包括使用np.select和pd.cut函数。这些函数都非常有用,可以帮助我们快速、高效地处理数据,并使得数据转换和分类更容易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31