京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是一个广泛使用的Python库,用于数据分析和处理。Pandas中的核心数据结构是DataFrame,这是一个表格形式的数据结构,类似于Excel表格或SQL表。DataFrame具有许多功能,例如数据排序、过滤、统计和聚合等。
在DataFrame中,我们通常需要从单元格中获取值以执行特定操作。在本文中,我们将讨论如何从Pandas DataFrame单元格获取值。
一、通过行列索引器获取值
Pandas支持使用行和列索引器来获取单个单元格的值。以下是如何使用行列索引器来获取DataFrame中特定单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 从第二行第一列(0-based)的单元格获取值
value = df.iloc[1, 0]
print(value)
上述代码创建了一个包含三列数据的简单DataFrame对象,其中包含“姓名”、“年龄”和“性别”列。然后,我们使用iloc函数来获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,使用print函数打印单元格的值。
二、使用at和iat方法获取单元格值
Pandas还提供了名为at和iat的两种方法,用于在DataFrame中获取单个值。这些方法比使用行列索引器更快,因为它们没有必要遍历整个DataFrame。
在使用at和iat方法时,您需要提供行和列的位置索引。以下是使用at和iat方法从DataFrame中获取值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'at'方法获取第二行第一列(0-based)的单元格值
value1 = df.at[1, '姓名']
print(value1)
# 使用'iat'方法获取第二行第一列(0-based)的单元格值
value2 = df.iat[1, 0]
print(value2)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们使用at函数和iat函数分别获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,我们使用print函数打印单元格的值。
三、使用loc和iloc方法获取多个单元格的值
有时,您可能需要从Pandas DataFrame中获取多个单元格的值。在这种情况下,您可以使用loc和iloc方法,这两种方法都可以用于选择行和列的子集。以下是如何使用loc和iloc方法从DataFrame中获取多个单元格值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'loc'方法获取第一行至第二行,"姓名"至"年龄"列的所有单元格值
values1 = df.loc[0:1, '姓名':'年龄']
print(values1)
# 使用'iloc'方法获取第一行至第二行,第一列至第二列(0-based)的所有单元格值
values2 = df.iloc[0:2, 0:2]
print(values2)
上述代码中,我们首先创建了一个包
含三列数据的简单DataFrame对象。然后,我们使用loc方法和iloc方法分别获取第一行至第二行、"姓名"至"年龄"列的所有单元格值和第一行至第二行、第一列至第二列(0-based)的所有单元格值,并将它们存储到变量中。最后,我们使用print函数打印多个单元格的值。
四、使用apply方法获取单元格值
Pandas还提供了一个名为apply的方法,可以应用自定义函数来对DataFrame进行操作。您可以使用apply方法来获取每个单元格的值,并将其传递给自定义函数进行处理。例如,以下是如何使用apply方法从DataFrame中获取单个单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 定义一个函数,用于获取DataFrame中某个单元格的值
def get_value(row, col):
return row[col]
# 使用'apply'方法获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理
value = df.apply(lambda x: get_value(x, 0), axis=1).iloc[1]
print(value)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们定义了一个自定义函数get_value,用于获取DataFrame中某个单元格的值。接下来,我们使用apply方法从DataFrame中获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理。最后,我们使用iloc函数和行索引器来选择返回值列表中的第二个元素,并将其存储到变量中。最终,我们使用print函数打印单元格的值。
总结
在本文中,我们讨论了如何从Pandas DataFrame单元格中获取值。我们介绍了使用行列索引器、at和iat方法、loc和iloc方法以及apply方法来获取单个单元格或多个单元格的值的示例代码。这些技术可以帮助您更有效地处理和操作Pandas DataFrame数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20