MySQL中的EXPLAIN命令可用于分析SELECT查询语句的执行计划。在EXPLAIN执行结果中,最常见的指标是“rows”,它表示MySQL估算在执行该查询时扫描的行数。本文将深入探讨MySQL中EXPLAIN执行结果中的rows统计原理。
在MySQL中,使用索引或全表扫描来获取查询结果的成本不同。MySQL会根据查询语句和数据表的特性,选择最优的查询执行计划。在进行查询执行计划之前,MySQL会收集表的统计信息,并根据这些统计信息进行优化选择。
对于一个给定的SELECT查询语句,MySQL会生成一棵查询执行计划树,其中每个节点代表一个操作步骤。这些操作步骤可能包括从单个表中读取行、合并两个有序列表、连接两个表等。在这个执行计划树中,每个节点都有一个估算值,表示这个操作步骤需要处理多少行数据。
当用户执行一个SELECT查询语句时,MySQL首先解析该语句,并将其转换为一个查询执行计划树。然后,MySQL会遍历该执行计划树,根据查询执行计划树上的每个节点计算出该节点需要处理的行数。这些行数累加到最终结果中,最终得到了查询所要扫描的总行数。
在MySQL中,EXPLAIN命令使用这种估算方法来预测查询执行的成本。当用户运行EXPLAIN命令时,MySQL会计算查询语句的执行计划树,并将每个节点的估算行数作为输出结果的一部分之一。其中,最重要的估算值是“All rows”(所有行),它表示整个查询语句会扫描多少行数据。此外,还有其他估算值,如“Filtered”(过滤)和“Using index”(使用索引)等。
下面我们来看几种常见情况下,MySQL如何计算rows值:
当我们对一个数据表执行SELECT查询时,MySQL会统计该表总行数,然后返回rows值为表的总行数。这是最简单和最基本的情况。
当我们在单个表上使用WHERE条件进行过滤时,MySQL会首先根据WHERE条件过滤出匹配的记录,然后根据实际匹配的行数计算rows值。
例如,如果我们有一个名为“users”的数据表,其中包含1000行记录,我们执行以下查询:
SELECT * FROM users WHERE age > 18;
MySQL会首先扫描整张表,找到所有年龄超过18岁的用户记录,并返回这些记录的行数作为rows值。这个值通常小于表的总行数。
在多表查询时,MySQL会根据连接类型和连接条件来计算rows值。对于INNER JOIN、LEFT JOIN和RIGHT JOIN等连接类型,MySQL会根据连接条件上的过滤条件来估算返回结果的行数。
例如,如果我们有一个名为“users”的数据表和一个名为“orders”的数据表,其中“orders”表包含10000行记录,我们执行以下查询:
SELECT * FROM users INNER JOIN orders ON users.id = orders.user_id;
MySQL会首先根据连接条件找到两个表中相匹配的记录,并返回这些记录的行数作为rows值。在这种情况下,该值通常小于两个表的总行数之和。
当我们在查询语句中使用索引时,MySQL可以通过索引统计信息来估算需要扫描的行数。例如,如果我们有一个名为“users
”的数据表,并在其中创建了一个名为“idx_age”的索引,我们执行以下查询:
SELECT * FROM users WHERE age > 18;
MySQL会使用“idx_age”索引来查找符合条件的记录。它可以根据该索引中存储的统计信息来估算需要扫描的行数。
当我们在查询语句中使用聚合函数时,MySQL会根据GROUP BY子句或DISTINCT关键字来计算rows值。例如,如果我们有一个名为“users”的数据表,并执行以下查询:
SELECT COUNT(DISTINCT age) FROM users;
MySQL会根据DISTINCT关键字统计出表中不同年龄的数量,并将其返回作为rows值。
当我们在查询语句中使用子查询时,MySQL会首先计算子查询语句的rows值,然后将其作为父查询的输入。例如,如果我们有一个名为“orders”的数据表和一个名为“users”的数据表,其中“orders”表包含10000行记录,我们执行以下查询:
SELECT * FROM orders WHERE user_id IN (SELECT id FROM users WHERE age > 18);
MySQL会首先执行子查询,找到所有年龄大于18岁的用户ID,然后将这些ID与“orders”表中的user_id列进行匹配。MySQL将使用子查询的rows值来计算父查询的rows值。
总之,MySQL中EXPLAIN执行结果中的rows值是根据查询执行计划估算的结果,这些估算值基于表的统计信息、查询语句和数据表特性等多种因素。虽然rows值只是一个估算值,但它可以帮助我们优化查询语句,减少查询的执行时间。如果需要进一步了解MySQL中的查询优化,请参考MySQL官方文档。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31