
SQL Server 提供了许多用于处理 JSON 数据的功能,其中之一是解析 JSON 数组。在此篇文章中,我将会介绍如何在 SQL Server 中解析 JSON 数组以及一些相关的注意事项。
JSON 数组的基本概念
JSON 数组是一种存储多个值的方式,每个值都可以是一个简单的类型(例如字符串、数字或布尔值)或者是一个复杂的类型(例如对象或其他数组)。JSON 数组由方括号 [] 包围,其中的值使用逗号分隔。
示例:
[ { "name": "John", "age": 30, "city": "New York" }, { "name": "Mary", "age": 25, "city": "Los Angeles" } ]
以上是一个包含两个对象的 JSON 数组,每个对象都有 name、age 和 city 三个属性。
SQL Server 如何解析 JSON 数组
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据。通过这个函数,你可以将 JSON 数组转换成表格形式,每行代表一个数组元素,每列代表一个属性。
以下是 OPENJSON 函数的基本语法:
OPENJSON(json_expression[, path]) [WITH (property_name data_type [,...])]
示例:
DECLARE @json NVARCHAR(MAX) SET @json = '[{"name": "John","age": 30,"city": "New York"},{"name": "Mary","age": 25,"city": "Los Angeles"}]' SELECT * FROM OPENJSON(@json)
以上 SQL 查询将会返回以下结果:
+-----------+-------+-------------+
| key | value | type |
+-----------+-------+-------------+
| 0 | -- | 5 (= JSON_ARRAY)|
| [0].name | John | 1 (= JSON_STRING)|
| [0].age | 30 | 2 (= JSON_INT)|
| [0].city | New York | 1 (= JSON_STRING)|
| 1 | -- | 5 (= JSON_ARRAY)|
| [1].name | Mary | 1 (= JSON_STRING)|
| [1].age | 25 | 2 (= JSON_INT)|
| [1].city | Los Angeles | 1 (= JSON_STRING)|
+-----------+-------+-------------+
在上面的查询中,我们使用了 OPENJSON 函数来解析 JSON 数组,并且没有指定 path 参数。因此,整个 JSON 对象都被解析了。OPENJSON 函数返回了一个表格,其中每行代表一个数组元素,每列代表一个属性。具体来说,表格包含三列:
注意事项
在使用 OPENJSON 函数时,需要注意以下几点:
总结
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据,可以将 JSON 数组转换成表格形式,方便后续的数据处理。在
使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,OPENJSON 函数只能返回基本数据类型,如果要返回复杂数据类型,需要进行一些转换操作。
在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。以下是一个具有嵌套数组和对象的示例:
{ "name": "John", "age": 30, "hobbies": [ { "name": "reading", "level": 3 }, { "name": "swimming", "level": 2 } ] }
我们可以使用如下 SQL 查询来解析该 JSON 对象:
DECLARE @json NVARCHAR(MAX) SET @json = '{"name": "John","age": 30,"hobbies": [{"name": "reading", "level": 3}, {"name": "swimming", "level": 2}]}' SELECT name, age, hobby_name, hobby_level FROM OPENJSON(@json) WITH (
name VARCHAR(50),
age INT,
hobbies NVARCHAR(MAX) AS JSON
) AS person CROSS APPLY OPENJSON(person.hobbies) WITH (
hobby_name VARCHAR(50),
hobby_level INT );
以上 SQL 查询将会返回以下结果:
+------+-----+------------+-------------+ | name | age | hobby_name | hobby_level | +------+-----+------------+-------------+ | John | 30 | reading | 3 | | John | 30 | swimming | 2 | +------+-----+------------+-------------+
在查询中,我们使用了 CROSS APPLY 子句来展开 hobbies 数组,并用嵌套的 WITH 子句来解析数组中的对象。最终得到包含两列的结果集,其中每行代表一个 hobby 兴趣。
结论
在 SQL Server 中,可以使用 OPENJSON 函数来解析 JSON 数组。通过将 JSON 数组转换为表格形式,可以方便地进行后续的数据处理。在使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。
推荐学习书籍
《**CDA一级教材**》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08