
Echarts 是一款由百度开源的数据可视化库,可用于生成各种类型的图表,包括地图。在 Echarts 中,可以通过地图下钻来实现地图的层级展示,同时也可以在地图上添加散点图等元素来丰富地图的内容。本文将介绍如何使用 Echarts 实现地图下钻和散点功能。
首先需要准备好 Echarts 的相关资源文件,包括 echarts.js 和 echarts-gl.js(用于支持 3D 效果)。这些文件可以从 Echarts 官网或 GitHub 上下载。同时,还需要准备好相应的地图数据,例如中国地图、各省市地图等。这些地图数据可以在 echarts-cities-js 或 echarts-countries-js 等仓库中找到并下载。
地图下钻是指从一个地图区域(例如国家)进入到该区域的下一级区域(例如省份),以此类推。在 Echarts 中,可以通过 series 属性中的 data 属性来配置地图数据,并通过 visualMap 属性来控制地图颜色。同时,还需在 series 中配置鼠标事件来实现地图下钻的效果。
以下是一个简单的地图下钻示例:
var chart = echarts.init(document.getElementById('main')); // 配置地图数据 var geoData = [
{ name: '北京', selected: false },
{ name: '上海', selected: false },
{ name: '天津', selected: false }, // 其他省市数据... ]; // 配置系列数据 var seriesData = [
{ name: '中国', type: 'map', mapType: 'china', selectedMode: 'single', roam: true, itemStyle: { normal: { label: { show: true } }, emphasis: { label: { show: true } },
}, data: geoData,
},
]; // 配置鼠标事件 chart.on('click', function (params) { var name = params.name; if (name === '北京') {
chart.setOption({ series: [
{ name: '北京', type: 'map', mapType: '北京', label: { show: true }, data: [],
},
],
});
} else if (name === '上海') {
chart.setOption({ series: [
{ name: '上海', type: 'map', mapType: '上海', label: { show: true }, data: [],
},
],
});
} else if (name === '天津') {
chart.setOption({ series: [
{ name: '天津', type: 'map', mapType: '天津', label: { show: true }, data: [],
},
],
});
} else { // 其他省市下钻... }
}); // 设置地图颜色 var visualMap = { type: 'piecewise', pieces: [
{ min: 10000, color: '#ff3333' },
{ min: 5000, max: 9999, color: '#ffa533' },
{ min: 1000, max: 4999, color: '#ffff33' },
{ min: 500, max: 999, color: '#33ff33' },
{ min: 1, max: 499, color: '#cccccc' },
{ value: 0, color: '#ffffff' },
], textStyle: { color: '#666666' },
}; // 渲染地图 chart.setOption({ tooltip: { show: true }, visualMap: visualMap, series: seriesData,
});
在上面的示例中,通过设置 series 类型为 'map',并指定 mapType 属性来显示中国地图。当用户点击某个省市时,会触发 chart 的 click 事件,在事件回调函数中根据不同的省市名称设置对应的地
图数据,实现地图下钻效果。同时,通过 visualMap 属性来设置地图颜色,并在 series 中配置 label 属性来显示省市名称。
除了地图下钻,还可以在地图上添加散点图等元素来丰富地图的内容。在 Echarts 中,可以通过 series 属性中的 type 属性来指定散点图类型,并通过 data 属性来配置散点数据。同时,还需在 geo 属性中配置地理坐标系相关信息,以便正确显示散点图位置。
以下是一个简单的地图散点示例:
var chart = echarts.init(document.getElementById('main')); // 配置地图数据 var geoData = [
{ name: '北京', selected: false },
{ name: '上海', selected: false },
{ name: '天津', selected: false }, // 其他省市数据... ]; // 配置系列数据 var seriesData = [
{ name: '散点', type: 'scatter', coordinateSystem: 'geo', data: [
{ name: '北京', value: [116.407394, 39.904211] },
{ name: '上海', value: [121.473662, 31.230372] },
{ name: '天津', value: [117.190182, 39.125596] }, // 其他城市数据... ], itemStyle: { normal: { color: '#ff8800',
},
},
},
]; // 配置地理坐标系 var geo = { map: 'china', roam: true, itemStyle: { normal: { label: { show: true } }, emphasis: { label: { show: true } },
},
}; // 设置地图颜色 var visualMap = { type: 'piecewise', pieces: [
{ min: 10000, color: '#ff3333' },
{ min: 5000, max: 9999, color: '#ffa533' },
{ min: 1000, max: 4999, color: '#ffff33' },
{ min: 500, max: 999, color: '#33ff33' },
{ min: 1, max: 499, color: '#cccccc' },
{ value: 0, color: '#ffffff' },
], textStyle: { color: '#666666' },
}; // 渲染地图 chart.setOption({ tooltip: { show: true }, visualMap: visualMap, geo: geo, series: seriesData,
});
在上面的示例中,通过设置 series 类型为 'scatter',并指定 coordinateSystem 为 'geo' 来实现散点图。通过在 data 中配置每个城市的经纬度来显示散点图位置,并在 itemStyle 中设置颜色。同时,在 geo 属性中设置地图相关信息,包括地图类型、漫游等。最后,通过 visualMap 属性来设置地图颜色。
以上就是使用 Echarts 实现地图下钻和散点功能的简单介绍。在实际开发中,可以根据具体需求来调整代码,并结合其他功能来实现更加丰富的地图效果。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08