Pandas 是一个流行的 Python 数据分析库,它提供了一系列方便的工具,可以用来操作和处理数据。在 Pandas 中,DataFrame 是最主要的数据结构之一,它可以看作是一种二维数据表格,其中每个列代表一种变量,而每行则代表一个样本或观察值。在实际数据分析中,我们经常需要按照某些条件过滤 DataFrame 中的行,以便得到符合特定需求的子集。本文将介绍如何根据 Pandas 中的列值过滤 DataFrame 行。
假设我们有一个包含多个列的 DataFrame,现在想要根据其中某一列的值进行筛选,该怎么做呢?这时候就需要使用 Pandas 的布尔索引功能。具体来说,我们可以通过在 DataFrame 中使用与、或、非等逻辑运算符将多个比较项组合起来,从而生成一个布尔型 Series,然后使用这个 Series 来选择 DataFrame 中对应的行。下面是一个简单的例子:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 列的值筛选行 df_filtered = df[df['age'] > 30] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 2 Charlie 35 M 3 David 40 M
这里我们通过在 DataFrame 中使用df['age'] > 30来生成一个布尔型 Series,并将其作为索引来选择符合条件的行。需要注意的是,这里的>符号只能用于比较数值类型的列,如果要比较其他类型的列,需要使用其他适当的比较符号。
除了大于号之外,还有很多其他的比较符号可以用于筛选单个列的值,例如等于、不等于、小于等。具体来说,常用的比较符号如下:
上面的例子中我们只筛选了一个列的值,那如果想要筛选多个列的值呢?这时候就需要使用 Pandas 的 loc 或 iloc 属性,结合布尔索引功能来实现。具体来说,loc 属性用于按标签(即列名)访问数据,而 iloc 属性则用于按位置访问数据。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 和 gender 列的值筛选行 df_filtered = df.loc[(df['age'] > 30) & (df['gender'] == 'M')] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 3 David 40 M
这里我们使用 loc 属性按列名访问了 DataFrame 中的 age 和 gender 列,并将其用于生成布尔型 Series。然后我们使用与逻辑符&将两个比较项组合起来,并将结果传递给 loc 或 iloc 属性来选择符合条件的行。
需要注意的是,如果要同时筛选多个列
的值,需要使用圆括号将不同列的比较项括起来,并使用逻辑运算符进行组合。为了让代码更加清晰易读,推荐在每个比较项之间添加换行符或缩进。
除了使用比较运算符来筛选 DataFrame 的行之外,还可以使用 Pandas 提供的 isin() 方法。该方法可以用于检查 DataFrame 中某一列中的值是否包含在指定的列表中,返回一个布尔型 Series。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 gender 列的值筛选行 df_filtered = df[df['gender'].isin(['F', 'M'])] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 0 Alice 25 F 1 Bob 30 M 2 Charlie 35 M 3 David 40 M
这里我们使用 isin() 方法检查 DataFrame 中的 gender 列中的值是否包含在列表['F', 'M']中,并将结果传递给布尔索引功能来选择符合条件的行。需要注意的是,isin() 方法接受一个包含要匹配值的列表作为参数,可以同时匹配多个值。
除了上述方法之外,Pandas 还提供了一个 query() 方法,可以让我们使用类似 SQL 的语法来筛选 DataFrame 中的行。具体来说,该方法接受一个字符串表达式,其中包含列名、比较符号和逻辑运算符等操作,返回一个 DataFrame 子集。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 和 gender 列的值筛选行 df_filtered = df.query('age > 30 and gender == "M"') print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 3 David 40 M
这里我们使用 query() 方法将条件表达式'age > 30 and gender == "M"'传递给 DataFrame,用于筛选行。需要注意的是,在查询表达式中,列名需要用引号括起来,而字符串或数字则不需要。
总之,Pandas 提供了多种方法来根据列值过滤 DataFrame 的行。在实际数据分析中,需要根据具体需求选择最合适的方法,以便高效地处理大规模数据集。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。
学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06