热线电话:13121318867

登录
首页大数据时代【好课推荐】基于通信基站定位商圈的商业数据挖掘案例
【好课推荐】基于通信基站定位商圈的商业数据挖掘案例
2023-06-12
收藏

01 为什么要学这门课?

在当今数字化、信息化的时代背景下,数据扮演着越来越重要的角色。随着互联网和移动通信的快速发展,我们每天都产生大量的数据,其中包含了许多隐藏的商机和洞察力。

通信运营商经常面临一个问题,如何选定商圈才能最大化收益?这里就要用到数据挖掘算法,来进行处理,具体来说,使用某通信运营商提供的接口解析用户的定位数据以及对应属性,并对基站进行分群。通过比较不同商圈的分群结果,选择合适的区域进行后续的营销活动。

02  如何学这门课?

第一步,理解K均值聚类算法及其在项目中的应用。需要掌握相似度度量、算法逻辑和算法评估等方面的知识。

第二步,应该着重学习与项目相关的技术和操作。首先是数据可视化,需要学会使用适当的工具将数据以图形方式展示出来,以便更好地理解和分析数据。其次是数据清洗,需要了解如何处理数据中的缺失值异常值重复值,确保数据质量。此外,还应该学习相关性分析和维度归约技术,以减少数据的维度并提高模型的效果。

还需要学习K均值算法的调优策略,以进一步改进模型的性能。这包括选择合适的聚类数目、初始化方法和迭代停止条件等方面的知识。

通过这个案例,将获得以下收获:理解K均值聚类算法的逻辑,包括相似度度量、算法逻辑和算法评估等方面的知识。还将掌握应用聚类算法时涉及到的数据可视化数据清洗、相关性分析和维度归约等操作。此外,还将学习K均值算法的调优策略以及在商业分析中的解释。

03  这门课谁适合学?

数据科学爱好者:通过学习K均值聚类算法,深入了解数据聚类的原理和应用,并在未来的数据分析项目中运用这些知识。

商业分析师:K均值聚类算法在客户画像、产品分群和精准营销等领域广泛应用,可以掌握如何利用聚类算法进行商业数据分析和决策。

数据分析师:学习K均值聚类算法,掌握数据可视化数据清洗、相关性分析和维度归约等操作,进一步提高分析的准确性和效果。

IT专业人员:通过学习K均值聚类算法和项目中所涉及的数据清洗、调优流程,将这些技能应用到其他领域,如异常客户监测和个性化推荐等。

04 这门课学什么?这是一门商业数据挖掘案例课。一共1个章节,预计一周内的时间学完。

部分案例截图:

在当今竞争激烈的市场环境中,了解客户需求并制定有效的策略对于企业的成功至关重要。
从实际案例出发,利用一个通信运营商提供的接口,解析用户的定位数据和属性信息,并对基站进行分群,以选择适合的区域展开精准营销活动。深入了解K均值聚类算法的算法逻辑、相似度度量和评估方法等核心知识。
通过完整的案例学习,掌握应用聚类算法时所涉及的数据可视化数据清洗、相关性分析和维度归约等操作技巧,还将了解K均值算法的调优策略和在商业分析中的解释。这些技能将提升在数据处理和分析领域的能力,并为在职场上获得更多机会铺平道路。
不要错过这个机会,购买我们的课程,与我们一起探索K均值聚类算法的奥秘,学习应用于实际场景的技巧,成为数据驱动的专家!立即行动,开启您的学习之旅吧!扫描二维码或者点击原文链接即可报名!


报名入口:https://edu.cda.cn/goods/show/958

查看更多课程:https://edu.cda.cn/course/explore/project_1

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询