
cd /opt/linuxsir
tar -zxvf hadoop-2.7.3.tar.gz
ls
mv hadoop-2.7.3 /opt/linuxsir/hadoop
在192.168.31.131虚拟机上编辑/root/.bashrc文件,然后复制到192.168.31.132、192.168.31.133
echo "" >> /root/.bashrc
echo "export HADOOP_PREFIX=/opt/linuxsir/hadoop" >> /root/.bashrc
echo "export HADOOP_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_COMMON_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop" >> /root/.bashrc
echo "export HADOOP_HDFS_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_MAPRED_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_YARN_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export PATH=$PATH:$HADOOP_PREFIX/sbin:$HADOOP_PREFIX/bin" >> /root/.bashrc
echo "export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"" >> /root/.bashrc
echo "export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native" >> /root/.bashrc
echo "export CLASSPATH=$CLASSPATH:/opt/linuxsir/hadoop/lib/*" >> /root/.bashrc
cat /root/.bashrc
\在192.168.31.131上,复制/root/.bashrc到132和133
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
\在192.168.31.131上,在131/132/133三台机器上运行/root/.bashrc,刷新环境
cd
source /root/.bashrc
ssh root@192.168.31.132 source /root/.bashrc
ssh root@192.168.31.133 source /root/.bashrc
cd /opt/linuxsir/hadoop \进入/opt/linuxsir/hadoop目录
rm -rf /opt/linuxsir/hadoop/tmp
rm -rf /opt/linuxsir/hadoop/hdfs
mkdir /opt/linuxsir/hadoop/tmp \创建tmp目录
mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name \创建hdfs的data、name子目录
\还要针对hd-slave1,hd-slave2等两个节点上执行上述命令,然后再初始化hdfs
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.132 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.133 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
对若干配置文件进行设置,保证Hadoop能够正常启动。
(1) 主要的配置文件包括HADOOP_HOME目录下的
(2) 并且为如下文件配置环境变量
(3)master和slave
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的core-site.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>file:///opt/linuxsir/hadoop/tmp</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hd-master:9000</value><!-- NameNode URI -->
</property>
<property>
<name>io.file.buffer.size</name>
<value>131702</value>
</property>
</configuration>
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的hdfs-site.xml文件,内容如下
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/name</value> <!-- 本机name目录for NameNode -->
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/data</value> <!-- 本机data目录for DataNode -->
</property>
<property>
<name>dfs.replication</name> <!-- 数据块副本数量 -->
<value>2</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hd-master:9001</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop目录下,复制mapred-site.xml.template到mapred-site.xml,并且进行编辑
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value> <!--yarn or yarn-tez-->
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
<property>
<name>mapreduce.map.memory.mb</name> <!-- memory for map task -->
<value>64</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name> <!-- memory for reduce task -->
<value>128</value>
</property>
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>32</value>
</property>
<property>
<name>mapreduce.map.java.opts</name> <!-- settings for JVM map task -->
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name> <!-- settings for JVM reduce task -->
<value>-Xms128m -Xmx256m</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop编辑yarn-site.xml
文件,对YARN资源管理器的ResourceManager和NodeManagers节点、端口、内存分配等进行配置
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hd-master</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>hd-master:9032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>hd-master:9030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hd-master:9031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>hd-master:9033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>hd-master:9099</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>8</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
进入hadoop-env.sh脚本文件所在目录/opt/linuxsir/hadoop/etc/Hadoop
export JAVA_HOME=/opt/linuxsir/java/jdk
接着,设置/opt/linuxsir/hadoop/etc/hadoop目录下yarn-env.sh脚本文件的JAVA_HOME变量,内容如下
export JAVA_HOME=/opt/linuxsir/java/jdk
如果NodeManager因为内存不足,而启动不起来,那么yarn-env.sh文件需要做如下修改,即JAVA_HEAP_MAX改为3G
JAVA_HEAP_MAX=-Xmx3072m
修改/opt/linuxsir/hadoop/etc/hadoop/masters文件和/opt/linuxsir/hadoop/etc/hadoop/slaves文件,目的是指定主节点和从节点列表。
/opt/linuxsir/hadoop/etc/hadoop/masters文件的内容如下,即主节点为hd-master
hd-master
/opt/linuxsir/hadoop/etc/hadoop/slaves文件的内容如下,即从节点为hd-slave1和hd-slave2
hd-slave1
hd-slave2
从192.168.31.131虚拟机复制Hadoop到其它各个节点,包括192.168.31.132、192.168.31.133。 在192.168.31.131上运行如下命令
chmod a+rwx -R /opt/linuxsir \设置/opt/linuxsir的存取权限
ssh root@192.168.31.132 chmod a+rwx -R /opt/linuxsir
ssh root@192.168.31.133 chmod a+rwx -R /opt/linuxsir
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc \复制/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
scp -r /opt/linuxsir/hadoop hd-slave1:/opt/linuxsir \复制/opt/linuxsir/hadoop
scp -r /opt/linuxsir/hadoop hd-slave2:/opt/linuxsir
source ~/.bashrc \刷新环境变量
ssh root@192.168.31.132 source ~/.bashrc
ssh root@192.168.31.133 source ~/.bashrc
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25