cd /opt/linuxsir
tar -zxvf hadoop-2.7.3.tar.gz
ls
mv hadoop-2.7.3 /opt/linuxsir/hadoop
在192.168.31.131虚拟机上编辑/root/.bashrc文件,然后复制到192.168.31.132、192.168.31.133
echo "" >> /root/.bashrc
echo "export HADOOP_PREFIX=/opt/linuxsir/hadoop" >> /root/.bashrc
echo "export HADOOP_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_COMMON_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop" >> /root/.bashrc
echo "export HADOOP_HDFS_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_MAPRED_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_YARN_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export PATH=$PATH:$HADOOP_PREFIX/sbin:$HADOOP_PREFIX/bin" >> /root/.bashrc
echo "export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"" >> /root/.bashrc
echo "export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native" >> /root/.bashrc
echo "export CLASSPATH=$CLASSPATH:/opt/linuxsir/hadoop/lib/*" >> /root/.bashrc
cat /root/.bashrc
\在192.168.31.131上,复制/root/.bashrc到132和133
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
\在192.168.31.131上,在131/132/133三台机器上运行/root/.bashrc,刷新环境
cd
source /root/.bashrc
ssh root@192.168.31.132 source /root/.bashrc
ssh root@192.168.31.133 source /root/.bashrc
cd /opt/linuxsir/hadoop \进入/opt/linuxsir/hadoop目录
rm -rf /opt/linuxsir/hadoop/tmp
rm -rf /opt/linuxsir/hadoop/hdfs
mkdir /opt/linuxsir/hadoop/tmp \创建tmp目录
mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name \创建hdfs的data、name子目录
\还要针对hd-slave1,hd-slave2等两个节点上执行上述命令,然后再初始化hdfs
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.132 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.133 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
对若干配置文件进行设置,保证Hadoop能够正常启动。
(1) 主要的配置文件包括HADOOP_HOME目录下的
(2) 并且为如下文件配置环境变量
(3)master和slave
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的core-site.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>file:///opt/linuxsir/hadoop/tmp</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hd-master:9000</value><!-- NameNode URI -->
</property>
<property>
<name>io.file.buffer.size</name>
<value>131702</value>
</property>
</configuration>
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的hdfs-site.xml文件,内容如下
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/name</value> <!-- 本机name目录for NameNode -->
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/data</value> <!-- 本机data目录for DataNode -->
</property>
<property>
<name>dfs.replication</name> <!-- 数据块副本数量 -->
<value>2</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hd-master:9001</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop目录下,复制mapred-site.xml.template到mapred-site.xml,并且进行编辑
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value> <!--yarn or yarn-tez-->
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
<property>
<name>mapreduce.map.memory.mb</name> <!-- memory for map task -->
<value>64</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name> <!-- memory for reduce task -->
<value>128</value>
</property>
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>32</value>
</property>
<property>
<name>mapreduce.map.java.opts</name> <!-- settings for JVM map task -->
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name> <!-- settings for JVM reduce task -->
<value>-Xms128m -Xmx256m</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop编辑yarn-site.xml
文件,对YARN资源管理器的ResourceManager和NodeManagers节点、端口、内存分配等进行配置
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hd-master</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>hd-master:9032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>hd-master:9030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hd-master:9031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>hd-master:9033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>hd-master:9099</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>8</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
进入hadoop-env.sh脚本文件所在目录/opt/linuxsir/hadoop/etc/Hadoop
export JAVA_HOME=/opt/linuxsir/java/jdk
接着,设置/opt/linuxsir/hadoop/etc/hadoop目录下yarn-env.sh脚本文件的JAVA_HOME变量,内容如下
export JAVA_HOME=/opt/linuxsir/java/jdk
如果NodeManager因为内存不足,而启动不起来,那么yarn-env.sh文件需要做如下修改,即JAVA_HEAP_MAX改为3G
JAVA_HEAP_MAX=-Xmx3072m
修改/opt/linuxsir/hadoop/etc/hadoop/masters文件和/opt/linuxsir/hadoop/etc/hadoop/slaves文件,目的是指定主节点和从节点列表。
/opt/linuxsir/hadoop/etc/hadoop/masters文件的内容如下,即主节点为hd-master
hd-master
/opt/linuxsir/hadoop/etc/hadoop/slaves文件的内容如下,即从节点为hd-slave1和hd-slave2
hd-slave1
hd-slave2
从192.168.31.131虚拟机复制Hadoop到其它各个节点,包括192.168.31.132、192.168.31.133。 在192.168.31.131上运行如下命令
chmod a+rwx -R /opt/linuxsir \设置/opt/linuxsir的存取权限
ssh root@192.168.31.132 chmod a+rwx -R /opt/linuxsir
ssh root@192.168.31.133 chmod a+rwx -R /opt/linuxsir
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc \复制/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
scp -r /opt/linuxsir/hadoop hd-slave1:/opt/linuxsir \复制/opt/linuxsir/hadoop
scp -r /opt/linuxsir/hadoop hd-slave2:/opt/linuxsir
source ~/.bashrc \刷新环境变量
ssh root@192.168.31.132 source ~/.bashrc
ssh root@192.168.31.133 source ~/.bashrc
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03