这里我们创建一个DataFrame
命名为df
:
import numpy as np
import pandas as pd
d = np.array([[81, 28, 24, 25, 96],
[ 8, 35, 56, 98, 39],
[13, 39, 55, 36, 3],
[70, 54, 69, 48, 12],
[63, 80, 97, 25, 70]])
df = pd.DataFrame(data = d,
columns=list('abcde'))
df
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
查看前n行
df.head(2)
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
查看后n行
df.tail(2)
a | b | c | d | e | |
---|---|---|---|---|---|
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
查看随机N行
df.sample(2)
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
3 | 70 | 54 | 69 | 48 | 12 |
单列选取,我们有3种方式可以实现
第一种,直接在[]
里面写上要筛选的列名
df['a']
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
第二种,在.iloc[]
里的,
前面写上要筛选的行索引,在,
后面写上要筛选的列索引。其中:
代表所有,0:3
代表从索引0到2
df.iloc[0:3,0]
0 81
1 8
2 13
Name: a, dtype: int64
第三种,直接.
后面写上列名
df.a
0 81
1 8
2 13
3 70
4 63
Name: a, dtype: int64
同样的,选择多列常见的也有3种方式:
第一种,直接在[]
里面写上要筛选的列名组成的列表['a','c','d']
df[['a','c','d']]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
第二种,在.iloc[]
里面行索引位置写:
选取所有行,列索引位置写上要筛选的列索引组成的列表[0,2,3]
df.iloc[:,[0,2,3]]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
第三种,在.loc[]
里面的行索引位置写:
来选取所有行,在列索引位置写上要筛选的列索引组成的列表['a','c','d']
df.loc[:,['a','c','d']]
a | c | d | |
---|---|---|---|
0 | 81 | 24 | 25 |
1 | 8 | 56 | 98 |
2 | 13 | 55 | 36 |
3 | 70 | 69 | 48 |
4 | 63 | 97 | 25 |
直接选取第一行
df[0:1]
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
用loc
选取第一行
df.loc[0:0]
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
选取任意多行
df.iloc[[1,3],]
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
3 | 70 | 54 | 69 | 48 | 12 |
选取连续多行
df.iloc[1:4,:]
a | b | c | d | e | |
---|---|---|---|---|---|
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
指定行列值
df.iat[2,2] # 根据行列索引
55
df.at[2,'c'] # 根据行列名称
55
指定行列区域
df.iloc[[2,3],[1,4]]
b | e | |
---|---|---|
2 | 39 | 3 |
3 | 54 | 12 |
以上是关于如何查看一个DataFrame里的数据,包括用[]
、iloc
、iat
等方式选取数据,接下来我们来看如何用条件表达式来筛选数据:
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20数据挖掘是一项强大的技术,用于从海量数据中提取有价值的信息和知识。它的主要目的是揭示隐藏的模式、关系和规律,以支持企业决 ...
2024-11-20