
在Pandas中,时间序列(Time Series)是一种特殊的数据类型,用于处理时间相关的数据。Pandas提供了丰富的功能和方法,方便对时间序列数据进行处理和分析。下面是一些针对时间序列的常用操作:
方式① 使用to_datetime
创建时间序列:直接传入列表即可
import pandas as pd
# 将列表转换为时间戳
date_range = pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])
date_range
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03'], dtype='datetime64[ns]', freq=None)
方式② 使用pd.date_range()
创建一段连续的时间范围:使用指定参数即可
import pandas as pd
date_range = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
date_range
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04',
'2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08',
'2024-01-09', '2024-01-10',
...
'2024-12-22', '2024-12-23', '2024-12-24', '2024-12-25',
'2024-12-26', '2024-12-27', '2024-12-28', '2024-12-29',
'2024-12-30', '2024-12-31'],
dtype='datetime64[ns]', length=366, freq='D')
其中,start是起始日期,end是结束日期,freq是频率,这里设置为'D'表示每天。
方式③ 使用Timestamp()
函数创建一个特定的时间戳:使用指定参数即可
import pandas as pd
timestamp = pd.Timestamp(year=2023, month=1, day=1, hour=12, minute=30, second=45)
timestamp
Timestamp('2023-01-01 12:30:45')
方式④ 使用 datetime 模块创建时间戳:使用指定参数即可
import pandas as pd
from datetime import datetime
timestamp = datetime(2023, 1, 1, 12, 30, 45)
print(timestamp)
2023-01-01 12:30:45
计算一下两个时间数据之差
import pandas as pd
# 创建两个固定时间
start_time = pd.Timestamp('2024-01-01 12:00:00')
end_time = pd.Timestamp('2024-01-02 14:30:00')
# 计算时间差
time_diff = end_time - start_time
time_diff
Timedelta('1 days 02:30:00')
一个固定时间加上pd.Timedelta
类型的时间差
pd.Timestamp('2024-01-02 14:30:00')+pd.Timedelta('1 days 02:30:00')
Timestamp('2024-01-03 17:00:00')
接下来,我们看看日期做索引的情况
将日期作为索引创建时间序列:
import pandas as pd
data = [1, 2, 3, 4, 5]
dates = pd.date_range(start='2024-01-01', periods=5, freq='D')
ts = pd.Series(data, index=dates)
ts
2024-01-01 1
2024-01-02 2
2024-01-03 3
2024-01-04 4
2024-01-05 5
Freq: D, dtype: int64
其中,periods是时间序列的长度,freq是频率,这里设置为'D'表示每天。
import pandas as pd
ts['2024-01-01']
1
使用日期范围进行切片:
import pandas as pd
ts['2024-01-01':'2024-01-05']
2024-01-01 1
2024-01-02 2
2024-01-03 3
2024-01-04 4
2024-01-05 5
Freq: D, dtype: int64
也可以使用切片操作对数据进行访问
import pandas as pd
ts[1:4]
2024-01-02 2
2024-01-03 3
2024-01-04 4
Freq: D, dtype: int64
时间序列的重采样: 将时间序列从高频率转换为低频率:
import pandas as pd
ts.resample('W').mean()
2024-01-07 3.0
Freq: W-SUN, dtype: float64
其中,'W'表示按周进行重采样,mean()表示计算每周的平均值。
时间序列的滚动计算: 计算滚动平均值:
import pandas as pd
ts.rolling(window=3).mean()
2024-01-01 NaN
2024-01-02 NaN
2024-01-03 2.0
2024-01-04 3.0
2024-01-05 4.0
Freq: D, dtype: float64
其中,window=3表示窗口大小为3,即计算每3个数据的平均值。
时间序列的时间偏移: 将时间序列向前或向后移动:
import pandas as pd
ts.shift(1)
2024-01-01 NaN
2024-01-02 1.0
2024-01-03 2.0
2024-01-04 3.0
2024-01-05 4.0
Freq: D, dtype: float64
其中,1表示向后移动1个时间单位。
在 Pandas 中,可以使用 dt 访问器来访问时间戳或时间序列中的各个时间部分,例如年、月、日、小时、分钟、秒等。通过使用 dt 访问器,你可以方便地提取和操作时间信息。
下面是一些常用的 dt 访问器的示例:
import pandas as pd
# 创建一个时间序列
timestamps = pd.Series(pd.date_range('2023-01-01', periods=5, freq='D'))
timestamps
0 2023-01-01
1 2023-01-02
2 2023-01-03
3 2023-01-04
4 2023-01-05
dtype: datetime64[ns]
# 提取年份
year = timestamps.dt.year
year
0 2023
1 2023
2 2023
3 2023
4 2023
dtype: int64
# 提取月份
month = timestamps.dt.month
month
0 1
1 1
2 1
3 1
4 1
dtype: int64
# 提取日期
day = timestamps.dt.day
day
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 提取小时
hour = timestamps.dt.hour
hour
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 提取分钟
minute = timestamps.dt.minute
minute
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 提取秒数
second = timestamps.dt.second
second
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 获取季度
quarter = timestamps.dt.quarter
quarter
0 1
1 1
2 1
3 1
4 1
dtype: int64
# 获取周数
week = timestamps.dt.isocalendar().week
week
0 52
1 1
2 1
3 1
4 1
Name: week, dtype: UInt32
# 获取星期几的名称
day_name = timestamps.dt.day_name()
day_name
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
dtype: object
# 获取该日期是一年中的第几天
day_of_year = timestamps.dt.dayofyear
day_of_year
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 获取该日期是一周中的第几天(星期一为1,星期日为7)
day_of_week = timestamps.dt.dayofweek + 1
day_of_week
0 7
1 1
2 2
3 3
4 4
dtype: int64
# 获取该日期是一个月中的第几天
day_of_month = timestamps.dt.day
day_of_month
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 获取该日期所在月份的最后一天
end_of_month = timestamps.dt.daysinmonth
end_of_month
0 31
1 31
2 31
3 31
4 31
dtype: int64
import pandas as pd
# 创建时间戳序列
ts = pd.Series(pd.to_timedelta(np.arange(10),unit='m'))
ts
0 0 days 00:00:00
1 0 days 00:01:00
2 0 days 00:02:00
3 0 days 00:03:00
4 0 days 00:04:00
5 0 days 00:05:00
6 0 days 00:06:00
7 0 days 00:07:00
8 0 days 00:08:00
9 0 days 00:09:00
dtype: timedelta64[ns]
# 提取时间戳中的秒数
seconds = ts.dt.seconds
seconds
0 0
1 60
2 120
3 180
4 240
5 300
6 360
7 420
8 480
9 540
dtype: int64
seconds = ts.dt.to_pytimedelta()
seconds
array([datetime.timedelta(0), datetime.timedelta(seconds=60),
datetime.timedelta(seconds=120), datetime.timedelta(seconds=180),
datetime.timedelta(seconds=240), datetime.timedelta(seconds=300),
datetime.timedelta(seconds=360), datetime.timedelta(seconds=420),
datetime.timedelta(seconds=480), datetime.timedelta(seconds=540)],
dtype=object)
以上是Pandas针对时间序列的一些常用操作和示例代码
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08