在你的身边,星巴克(StarBauks)的身影大概越来越多吧。据资料表明,从2011年到2015年,星巴克在华新开了超过1300家店,门店总数达到1811家。呈现出逐渐加速的态势,此后五年内,星巴克计划每年在中国投资增设500家门店,预计2019年星巴克在华门店总数量达到3400家。
近日,正好从kaggle网站下载了星巴克的全球布点数据(Starbucks Locations Worldwide),让我们以国内为据点,通过大数据分析,看一下星巴克与民生经济之间的千丝万缕的联系。
众所周知,星巴克作为小资的代表,一向出现在大城市的热门地段,例如繁华的购物中心,高尚写字楼等等,受众也是有一定经济能力和教育背景的人群。所以,当我们看到上海以551家星巴克雄踞排名第一的城市/省份,这大概也不奇怪了。
以省份而言,接下来是江苏,浙江,广东等经济发达省份,星巴克的数量也占比甚高。若是以城市排名,北京以234家排名城市第二,而杭州为122家,深圳113家,广州106家。
北上广深,此时应该为北上杭深广了吧。
有人说,你喝的每一杯星巴克都有大数据的影子。确实,星巴克在选址方面,运用了大量数据的指标分析。星巴克全球公司会提供标准化的数据表格,利用内部数据平台,对预想店面附近的零售商圈,公共交通,以及人口分布作出评估,这是为了防止在不适宜的地点开设门店,导致错误决策和经济损失。
因此,星巴克选择门店的标准,也可以反映出所在地的经济能力。例如上面的省份排名,我们可以作出全国各省的星巴克分布热力图,来看个端倪:
由图中可见,星巴克的分布确实类似中国gdp,东西部发展不均。在西部某些省份没有店铺(比如西藏,去旅游的老外就忍忍吧。)在有店铺的省份中,宁夏和甘肃是最少的。
北上深广且不论,本来这里的小资就是星巴克的消费大户,但如何看出二三线城市的发展潜力,从星巴克店铺的布局也可见一斑吧?在沿海地区,即使是我们不熟悉的城市,星巴克的店铺甚至已经超过了某些内陆省份。下面,我们就以江苏和浙江这两个大户,分别细看一下它们的星巴克城市分布:
江苏省以苏州领先,南京次之
而浙江省以杭州遥遥领先,把第二位宁波远远抛在了后面。嗯,如果一定要比较的话,似乎江苏省的城市分布更为平均一些呢。马云老大,你要带动一下周边城市哦!
因为自己居住在广州,所以把比例再度细化,来看一下广州的星巴克具体分布。原数据库中,提供的经纬度只到小数点后2位,如果是全国地图的话,应该倒是够用。但落到市区地图上非常不准确,所以需要用店铺地址,连接百度API,通过程序重新获取。
星巴克广州分布
从上图可以看出,星巴克大多集中在广州比较热门的地方,在天河北中心广场到珠江新城的中轴线上,犹为集中。此外在地铁站点和临江两岸,也有不少分布。此外,就是白云区凯德万达等商区中心,也是一个小热点。
和星巴克并行的品牌,在本市还有costa coffee,我个人也满喜欢的。那就获取广州的costa分店来看一看吧。这家的数量少很多,在深圳有20家,广州15家,将其在广州的位置落子后(红色方块位置),发现主要也是集中在珠江新城一带。相对于周边环伺的浅蓝色星巴克影子,嗯,小朋友还要加油啊!
costa和星巴克分布
再扩展到全国来看(这个数据不用爬,在官网就有),分布也是比较不均匀。在帝都居然是一家都木有的。其余来说,基本也是按照经济规律分布,上海特别的遥遥领先,是品牌高层的偏爱,还是有特殊的地理优势呢?
回到广州的星巴克,再度进行店铺商区的粗略分类,之所以说粗略,是因为采用了店铺地址所在的建筑进行评估,比如店子在某写字楼,就算入办公,虽然它旁边也可能有一家酒店。如果裙楼是商业,上面是办公楼,那么就算如混合。
大致分类如下:
办公,例如越秀区的交易广场,14家;
住宅,例如保利香槟花园,14家;
混合,例如太古汇这类,11家;
交通枢纽,5家,广州东站和南站各1家,白云机场3家(是不是坐飞机的人比较高大上一点?);
酒店,4家,比如中国大酒店(这不很奇怪,毕竟很多大酒店也有自己的咖啡厅)。
遥遥领先的是纯购物商圈,例如正佳广场、万达广场、天河城等。看来广州的星巴克定位,主打人群还是购物和周末休闲呀。
以购物商圈而言,虽然有大量人流,但竞争也比较激烈,星巴克虽然选址成功,但也有痛点尚未解决,比如:
近年国人饮料的喜好也转向贡茶、喜茶等品牌。如何以较贵的价格吸引shopping人群;
随着电商平台兴起,购物广场不免部分转向萧条,重点投入在购物商圈,是否也会跟着中枪,接下来,会否加大在写字楼和住宅等的投入?
星巴克目前还是傲娇的没有外送,也没有正式和外送平台合作(美团上目前有一家第三方代购,58起价),随着平台外卖的兴起+现在的暑热天气,有没有错过一波风口?
以上只是根据星巴克部分数据,做一些好玩的分析。感兴趣的话还可以继续挖掘,比如其他城市的具体布局,比如各地老外的比例是否影响了星巴克的数量?数据分析的吸引之处,就在于用精确的数字,来印证脑洞大开的奇想。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21