
之前的文章中我们已经将master节点的网络IP、hostname文件、hosts文件配置完成,接下来还有hadoop相关配置文件需要修改。今天我们来讲master节点hadoop的配置。
1、hdfs-site.xml
在hadoop的配置文件中与HDFS(hadoop分布式文件系统)相关的是hdfs-core.xml文件。在伪分布集群中只有一个节点,因此此节点即要有NameNode功能也要有DataNode功能。在工作环境中这两个是不会在一个节点上的,在我们的多节点分布式集群中master只运行NameNode因此需在hdfs-site.xml文件中删除DataNode相关配置。
打开虚拟机在终端中输入cd hadoop/etc/hadoop 命令进入hadoop配置文件目录。
终端输入命令vim hdfs-site.xml进入vim编辑界面,按下图步骤删除原来伪分布集群配置的DataNode相关配置,并将数据冗余数量设置为2。
输入i进入编辑模式,编辑后的文件内容如下所示。
最后退出编辑模式,保存并退出。
2、core-site.xml
在core-site.xml中指定一个节点运行hdfs服务。在之前伪分布集群中只有一个节点,因此我们使用的是localhost,如今在集群中有三个节点,我们约定使用master。
在终端中输入vim core-site.xml按下图操作修改配置文件。
修改后内容如下所示
记得退出并保存。
在yarn-site.xml里可以修改与资源管理模块YARN相关的一些配置。
终端中输入 vim yarn-site.xml进行以下更改,将资源调度管理任务放置于master节点上
最终修改后的文件内容如下图所示。
4、mapred-site.xml
进行以下更改,主要添加mapreduce运行历史记录监控端口和网页端口。
同样,在终端输入vim mapred-site.xml开始编辑配置文件,配置内容如下所示
最后保存并退出。
5、slaves
slaves文件指明哪些节点运行DateNode进程,这里我们的集群中运行DataNode进程的节点有slave1、slave2。因此需将这两节点保存到slaves文件中。
在终端中输入 vim slaves命令编辑文件,编辑后的文件内容如下图所示。
最后保存slaves文件并退出编辑。到这里master节点上的hadoop相关配置已经完成了。
接下来我们要通过克隆master及slave1虚拟机来扩展集群。
6、生成slave1节点
通过克隆master 生成slave1节点的过程与之前克隆伪分布节点的操作是一致的这里不再赘述,唯一区别是在执行到下图步骤时注意将虚拟机名称设置为slave1并选择正确的存储位置方便管理。还有一点,被克隆的虚拟机一定要关机状态才可以被克隆。
slave1节点与master节点在hostname、IP地址、Hadoop配置这几个方面是有些差异的,在复制好slave1节点之后需进行配置。
6.1 配置IP地址
在前面文章中提到过slave1节点IP地址应设置为固定的值:192.168.79.12。详细的配置方法步骤已经在配置master节点时介绍过,配置slave1节点时可以参考一下。修改完成后的配置结果如下图所示,点击save保存即可。
6.2、修改hostname
保存并退出
6.3、修改Hadoop配置项
hdfs-site.xml
保存并退出之后重启slave1节点查看配置是否生效。
7、生成slave2节点
Slave2与slave1在Hadoop相关配置内容上是一致的,因此通过克隆slave1节点来生成slave2可以减少一些操作步骤。
克隆slave1节点时的操作步骤同样参考之前文章内容,区别是执行到下图步骤时记得更改虚拟机名称为slave2并更改存储目录(存储目录自己定义)。
7.1、配置IP地址
克隆完成后打开slave2虚拟机并配置其IP地址。配置过程与之前配置master节点IP过程一致,只是IP地址需改为192.168.79.13结果如下图所示,点击save保存即可。
更改Hostname,在终端中输入sudo vim /etc/hostname并回车执行,根据提示输入密码
输入i编辑hostname文件,文件内容如下所示为slave2,然后保存退出。
重启虚拟机测试配置是否生效,重启命令为sudo reboot
slave2重新启动后打开终端,输入命令ifconfig查看IP设置及虚拟机名,如下图所示配置已经生效。
到这里我们的hadoop集群安装配置完成。接下来的文章我会给大家介绍一下hadoop集群如如何启动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10