导读:对数据进行质量分析以后,接下来可通过绘制图表、计算某些特征量等手段进行数据的特征分析。
作者:张良均 谭立云 刘名军 江建明
来源:大数据DT(ID:hzdashuju)
内容摘编自《Python数据分析与挖掘实战》
其中,分布分析能揭示数据的分布特征和分布类型。本文就手把手教你做分布分析。
对于定量数据,要想了解其分布形式是对称的还是非对称的、发现某些特大或特小的可疑值,可做出频率分布表、绘制频率分布直方图、绘制茎叶图进行直观分析;对于定性数据,可用饼图和条形图直观地显示其分布情况。
01 定量数据的分布分析
对于定量变量而言,选择“组数”和“组宽”是做频率分布分析时最主要的问题,一般按照以下步骤进行:
第一步:求极差。
第二步:决定组距与组数。
第三步:决定分点。
第四步:列出频率分布表。
第五步:绘制频率分布直方图。
遵循的主要原则如下:
各组之间必须是相互排斥的。
各组必须将所有的数据包含在内。
各组的组宽最好相等。
下面结合具体实例来运用分布分析对定量数据进行特征分析。
表3-2是菜品“捞起生鱼片”在2014年第二个季度的销售数据,绘制销售量的频率分布表、频率分布图,对该定量数据做出相应的分析。
▲表3-2 “捞起生鱼片”的销售情况
1. 求极差
极差=最大值-最小值=3960-45=3915
2. 分组
这里根据业务数据的含义,可取组距为500.则组数如下所示。
组数=极差/组距=3915/500=7.83≈8
3. 决定分点
分布区间如表3-3所示。
▲表3-3 分布区间
4. 绘制频率分布直方表
根据分组区间得到如表3-4所示的频率分布表。
其中,第1列将数据所在的范围分成若干组段,其中第1个组段要包括最小值,最后一个组段要包括最大值。习惯上将各组段设为左闭右开的半开区间,如第一个组段为[0.500)。
第2列组中值是各组段的代表值,由本组段的上限值和下限值相加除以2得到。
第3列和第4列分别为频数和频率。
第5列是累计频率,是否需要计算该列数值视情况而定。
▲表3-4 频率分布
5. 绘制频率分布直方图
若以2014年第二季度“捞起生鱼片”这道菜每天的销售额组段为横轴,以各组段的频率密度(频率与组距之比)为纵轴,表3-4中的数据可绘制成频率分布直方图,如代码清单3-3所示。
代码清单3-3 “捞起生鱼片”的季度销售情况
import pandas as pd
import numpy as np
catering_sale = '../data/catering_fish_congee.xls' # 餐饮数据
data = pd.read_excel(catering_sale,names=['date','sale']) # 读取数据,指定“日期”
列为索引
bins = [0.500.1000.1500.2000.2500.3000.3500.4000]
labels = ['[0.500)','[500.1000)','[1000.1500)','[1500.2000)',
'[2000.2500)','[2500.3000)','[3000.3500)','[3500.4000)']
data['sale分层'] = pd.cut(data.sale, bins, labels=labels)
aggResult = data.groupby(by=['sale分层'])['sale'].agg({'sale': np.size})
pAggResult = round(aggResult/aggResult.sum(), 2. ) * 100
import matplotlib.pyplot as plt
plt.figure(figsize=(10.6)) # 设置图框大小尺寸
pAggResult['sale'].plot(kind='bar',width=0.8.fontsize=10) # 绘制频率直方图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.title('季度销售额频率分布直方图',fontsize=20)
plt.show()
运行代码清单3-3可得季度销售额频率分布直方图,如图3-3所示。
▲图3-3 季度销售额频率分布直方图
02 定性数据的分布分析
对于定性变量,常常根据变量的分类类型来分组,可以采用饼图和条形图来描述定性变量的分布,如代码清单3-4所示。
代码清单3-4 不同菜品在某段时间的销售量分布情况
import pandas as pd
import matplotlib.pyplot as plt
catering_dish_profit = '../data/catering_dish_profit.xls'# 餐饮数据
data = pd.read_excel(catering_dish_profit) # 读取数据,指定“日期”列
为索引
# 绘制饼图
x = data['盈利']
labels = data['菜品名']
plt.figure(figsize=(8. 6)) # 设置画布大小
plt.pie(x,labels=labels) # 绘制饼图
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('菜品销售量分布(饼图)') # 设置标题
plt.axis('equal')
plt.show()
# 绘制条形图
x = data['菜品名']
y = data['盈利']
plt.figure(figsize=(8. 4)) # 设置画布大小
plt.bar(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('菜品') # 设置x轴标题
plt.ylabel('销量') # 设置y轴标题
plt.title('菜品销售量分布(条形图)')# 设置标题
plt.show() # 展示图片
饼图的每一个扇形部分代表每一类型的所占百分比或频数,根据定性变量的类型数目将饼图分成几个部分,每一部分的大小与每一类型的频数成正比;条形图的高度代表每一类型的百分比或频数,条形图的宽度没有意义。
运行代码清单3-4可得不同菜品在某段时间的销售量分布图,如图3-4和图3-5所示。
▲图3‑4 菜品销售量分布(饼图)
▲图3‑5 菜品销售量分布(条形图)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31