
箱型图,又叫做箱线图(Boxplot),或者箱须图(Box-whisker Plot),另外,盒式图指的也是它。箱型图通常是被用作观察数据整体的分布情况,是通过数据中的五个统计量:最小值(上边界)、上四分位数(75/%分位数)、中位数、下四分位数(25/%分位数)与最大值(下边界)来描述数据的一种统计图。通过计算这些统计量,生成一个箱型图,可以直观地显示出数据的异常值,分布的离散程度以及数据的对称性。箱型图包含了大部分的正常数据,但是如果是位于箱体上边界和下边界之外的,就是异常数据。
一、箱型图5要素
中位数:二分之一分位数。计算的方法为:将一组数据按从小到大顺序排列后的处于中间位置的值。
注意:
如果原始序列长度n是奇数,那么中位数所在位置是(n+1)/2;
如果原始序列长度n是偶数,那么中位数所在位置是n/2.n/2+1.中位数的值等于这两个位置的数的算数平均数。
下四分位数Q1:位于数据序列25%位置处的数
四分位数的求法,是将序列平均分成四份。具体的计算目前有(n+1)/4与(n-1)/4两种,一般使用(n+1)/4.简单来说,也就是四分之一分位数即第(n+1)/4个数
上四分位数Q3:位于数据序列75%位置处的数。与下四分位数所在位置计算方法类似,为(1+n)/4*3=6.75.也就是介于第六与第七个位置之间的地方,对应的具体的值为0.75*6+0.25*7=6.25.
四分位间距IQR:IQR表示上下四分位差,系数1.5是一种经过大量分析和经验积累起来的标准,一般情况下不做调整。计算方法为: IQR = Q3-Q1
下限:非异常范围内的最大值= Q1 – 1.5 *IQR
上限:非异常范围内的最小值= Q3 + 1.5 *IQR
二、箱型图特性
1.能够直观的显示出异常值,如果数据有离群点,也就是位于上下边界之外,并以圆点来表示
2.如果箱型图很短,那么就代表着大部分数据都集中分布在很小的范围之内
3.如果箱型图很长,就代表着数据分布比较离散,数据间的差异较大
4.中位数所处的高低位置,可以反映数据的偏斜程度,如果中位数接近顶部,代表大部分的数据值比较大,反之,如果中位数接近底部,代表大部分的数据值比较小
5.上下虚线比较长时,代表着上下四分位数之外的数据变化较大,整体数据的方差和标准偏差也比较大
6.箱型图的上下边界代表着非异常范围内的最大值或最小值
另外,虽然通过箱型图可以清晰看出数据的分布偏态,但是箱型图并不能显示出关于数据分布偏态和尾重程度的精确度量。而且当数据量很大时,箱型图反映出来的数据信息会更加模糊。因此,建议结合均值、标准差、偏度、分布函数等工具一起使用。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10