京公网安备 11010802034615号
经营许可证编号:京B2-20210330
箱型图,又叫做箱线图(Boxplot),或者箱须图(Box-whisker Plot),另外,盒式图指的也是它。箱型图通常是被用作观察数据整体的分布情况,是通过数据中的五个统计量:最小值(上边界)、上四分位数(75/%分位数)、中位数、下四分位数(25/%分位数)与最大值(下边界)来描述数据的一种统计图。通过计算这些统计量,生成一个箱型图,可以直观地显示出数据的异常值,分布的离散程度以及数据的对称性。箱型图包含了大部分的正常数据,但是如果是位于箱体上边界和下边界之外的,就是异常数据。
一、箱型图5要素
中位数:二分之一分位数。计算的方法为:将一组数据按从小到大顺序排列后的处于中间位置的值。
注意:
如果原始序列长度n是奇数,那么中位数所在位置是(n+1)/2;
如果原始序列长度n是偶数,那么中位数所在位置是n/2.n/2+1.中位数的值等于这两个位置的数的算数平均数。
下四分位数Q1:位于数据序列25%位置处的数
四分位数的求法,是将序列平均分成四份。具体的计算目前有(n+1)/4与(n-1)/4两种,一般使用(n+1)/4.简单来说,也就是四分之一分位数即第(n+1)/4个数
上四分位数Q3:位于数据序列75%位置处的数。与下四分位数所在位置计算方法类似,为(1+n)/4*3=6.75.也就是介于第六与第七个位置之间的地方,对应的具体的值为0.75*6+0.25*7=6.25.
四分位间距IQR:IQR表示上下四分位差,系数1.5是一种经过大量分析和经验积累起来的标准,一般情况下不做调整。计算方法为: IQR = Q3-Q1
下限:非异常范围内的最大值= Q1 – 1.5 *IQR
上限:非异常范围内的最小值= Q3 + 1.5 *IQR
二、箱型图特性
1.能够直观的显示出异常值,如果数据有离群点,也就是位于上下边界之外,并以圆点来表示
2.如果箱型图很短,那么就代表着大部分数据都集中分布在很小的范围之内
3.如果箱型图很长,就代表着数据分布比较离散,数据间的差异较大
4.中位数所处的高低位置,可以反映数据的偏斜程度,如果中位数接近顶部,代表大部分的数据值比较大,反之,如果中位数接近底部,代表大部分的数据值比较小
5.上下虚线比较长时,代表着上下四分位数之外的数据变化较大,整体数据的方差和标准偏差也比较大
6.箱型图的上下边界代表着非异常范围内的最大值或最小值
另外,虽然通过箱型图可以清晰看出数据的分布偏态,但是箱型图并不能显示出关于数据分布偏态和尾重程度的精确度量。而且当数据量很大时,箱型图反映出来的数据信息会更加模糊。因此,建议结合均值、标准差、偏度、分布函数等工具一起使用。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24