文章来源: 接地气学堂
作者:接地气的陈老师
很多同学搞不清楚数据运营和数据分析啥区别。一提起要“搭建数据运营体系”或者“建立数据运营机制”就懵圈:
1、这跟我做一套数据指标有什么区别?
2、为啥我做了数据指标,可运营部门根本不理我?
3、好像每一种运营都有自己的指标体系了,还咋个数据运营法?
今天我们系统解答一下。
先问一个最关键问题:数据运营,重点在数据上,还是运营上?
一
屏
幕
思
考
时
间
01运营与数据关系
注意,运营是个大工作,里边的分支非常多。单独看每一类运营,都有一套自己的指标体系。这就是开头说的:“运营已经自己有指标了,我做了指标他们不看”问题的本质所在。(如下图)
为什么会这样?因为从本质上看,运营是个辅助性工作。理论上,如果产品力足够强大,商品天下无敌,那根本没运营啥事。——用户自己就抢着买到断货,玩的乐不思蜀了,运营啥运营。可大部分产品、商品没有这么厉害,因此需要运营打辅助,通过用户激励、促销活动、内容传播、商品运作等等手段,来保持用户的新鲜感,促进用户持续活跃和付费。俗话说:“产品不够,运营凑”就是这个意思。
因此运营会特别在意数据,并且特别在意数据里的“自然增长率”——他们的所有工作,都是在“自然增长率”之上做叠加。
诸如此类
运营在体现自己功劳的时候一定会带上数据。因此往往各个部门已经建立了自己的数据指标。
02数据运营的破题关键
如果数据运营把重点放在数据上,那最终就是沦为跑数机器的命。运营自己已经有数据指标了,你就等着被他们催着取数好了,而且还是加急加急加加急。这根本不需要单独设一个岗位,只要花月薪6000招聘一个人行sql机,让数据部门准备个大宽表即可。实际上,很多公司确实是这么干的,这也是为啥很多同学会有开头的疑惑。我们今天不谈这些low B公司,我们分享一下数据运营的真正目标,以及大厂们是拿它来干什么的。
运营各自看数据,看似科学,实则带着原罪:运营工作本身需要相互配合,可各个部门的小团伙利益是天然冲突的。
在一个需要相互配合的工作里,各自考核数据,必然导致部门间相互拆台。因此数据运营的更好用法,不是拿来当跑数机,而是建立一套从整体目标出发的数据考核机制,让所有部门跳出小圈子,为整体利益服务。这才是设立这个岗位的初衷,和岗位的真正价值。
所以开头的题目选B,数据运营本质是运营,是要建立一套从整体目标出发,引导各子运营小组工作的考核机制。它本质是个工作机制,因此需要部门间共识目标,协同配合,取代各自为战的状态,这样才能发挥作用。
03数据运营体系搭建方法
第一步:共识整体目标,制定整体战术。各个运营小组,共识年度大部门整体目标(比如DAU、转化率、销售金额等),并且选择落地大目标的战术,把大目标分解到各个月。注意:分解方法和不一定是按月平均,或按过往趋势分摊。分解方法可能和战术选择有关(如下图)
第二步:设定阶段性重点,各小组分配任务。
第三步:分解阶段性指标,各部门执行、监测、反馈。这一步就是常规运营数据指标的监控过程,不再赘述了。有了前两步,每阶段的运营工作就有了清晰的主任务,就不用纠结在“为啥短期类活跃率降了”“到底自然增长该写多少合适”“又有几个客户投诉很激烈”——整体目标达成就好。细节问题,可以在各小组自己复盘的时候,再找改进点。
第四步:监控执行进度,从小到大检讨效果。这时候要牢记检讨三原则:
当所有部门在部门例会上共识目标,跟踪进度,反馈问题,协同工作的时候,这套机制就算正常运转起来了。这样能保证整体目标的最大化落地,也能提醒各小组关键任务是什么——不要被自己一亩三分地发生的破事淹没了。
看完了,很多同学说:这一套方法论和增长黑客看起来很像呀。是滴,所谓增长黑客,其实也是一种统一协调各部门,为“增长”服务的办法。所以方法思路是很类似的。只可惜和数据运营一样,也被很多公司用歪了。
类似的,大家在做具体工作的时候,也不必要因为眼前公司的种种举动而怀疑人生——有可能就是你的公司水平太低而已。关键是多理解一个业务的本质,站在对业务有利的角度思考,多去理解业务部门同事真实处境与出发点,不要被玄乎的概念带着走。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21