来源: Python猫
作者:豌豆花下猫
关于变量的命名,这又是一个容易引发程序员论战的话题。如何命名才能更具有可读性、易写性与明义性呢?众说纷纭。
本期“Python为什么”栏目,我们将聚焦于变量命名中的连接方式,来切入这块是非之地,想要回答的问题是——Python 为什么要推荐蛇形命名法?
首先一点,对于单个字符或者单词(例如:a、A、PYTHON、Cat),当它们被用作变量名时,大致有全小写、全大写和首字母大写这几种情况。编程语言中出现这些情况时,它们基本上跟英语的表达习惯是相同的。
但是,编程语言为了令变量名表达出更丰富的含义,通常需要使用多个单词或符号。英语习惯使用空格来间隔开单词,然而这种用法在编程语言中会带来一些麻烦,所以程序员们就创造出了另外的方法:
总体而言,这些命名法都是要克服单词间的空格,从而把不同单词串连起来,最终达到创造出一种新的“单词”的效果。
我画了一张思维导图,大略区分了这几种命名法:
如果按照受众量与知名程度排名,毫无疑问排前两位的是驼峰命名法和蛇形命名法。
我们简单比较一下它们的优缺点:
由此可见,它们各有优缺点,但哪一方都不具有压倒性。我个人稍微偏好于蛇形命名法,但是在需要用驼峰命名的时候(比如写 Java 时),也能无障碍切换。
需要指出的是,Python 也推荐使用驼峰式命名,那是在类名、Type 变量、异常 exception 名这些情况。而在包名、模块名、方法名和普通变量名等情况,则是推荐用蛇形命名(lower_case_with_underscores)。
那么,为什么 Python 会推荐用蛇形命名法呢?
最大的原因是历史原因。蛇形命名方式起源于 1960 年代,那时它甚至还没有特定的名称。Python 从 C 语言中借鉴过来后,给它起名为“lower_case_with_underscores”,即带下划线的小写命名。
直到 21 世纪初的几年,在 Intel 和 Ruby 社区中,才有人开始以“snake_case”即蛇形命名来称呼它。
现今有不少编程语言在某些场景下会推荐使用蛇形命名法,而 Python 则是其中最早这么做的之一,并且是使用场景最多的语言之一。
维基百科上统计了一份清单,可以看出 Python 对它的偏好:
其次,还有一个比较重要的原因,那就是 Python 对下划线“_”的独特偏爱。
比如类似于 _xx、__xx、xx_、__xx__ 等等的写法就随处可见,甚至还有孤零零一个下划线 _ 作为变量的特殊情况。这样看来,下划线作为单词间的连接,恰恰是这种传统习惯的一部分。
最后,我还看到过一种解释:因为 Python 是蟒蛇啊,理所当然是用蛇形命名……
对于这三个解释,你们是如何感想的呢?对于蛇形命名法,大家是喜欢还是不喜欢呢?欢迎留言交流。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21