文章来源: 接地气学堂
作者:接地气的陈老师
很多同学最怕听“建模型”仨字。尤其是建立“业务分析模型”。往往自己辛辛苦苦搞得LR、SVM、CNN被业务方狂喷:你这都是啥东西!脱离业务!不切实际!所以到底什么是“业务分析模型”,又改怎么建?我们今天系统讲解一下
1
业务分析模型是什么
首先,一个正儿八经的分析模型得包含三个条件:
所以,首先得把SWOT,PEST,4P之流的垃圾扫出“模型”队伍。因为这些玩意有逻辑、有目标,但很难用数据进行论证。不信你看那些什么SWOT,PEST的报告,四个框框里都没几个数字,即使有数字也很难论证:到底90后比80后减少5000万会对我们业绩产生几百万影响。无法量化计算的,不算分析模型。它们只是拿来美化ppt的。
业务分析模型的重点,在“业务”两个字。得让业务参与得进来,看得懂,能应用的,才叫业务分析模型。显然,我们不能指望产品经理、销售、运营、售后、物流的人去学《机器学习》《数学建模》《统计学》《python编程》所以数据分析师们经常打交道的算法模型就不要在这里用了——业务看不懂,参与不进来,问题解决不了,当然会喷没有用。
有的同学会疑惑:可我的领导只会提“建个模型”,说不出是业务模型还是算法模型,我怎么区别呢?有个最简单的原则是:非技术出身的领导,90%以上讲的是业务模型(剩下10%是他在朋友圈看了个协同过滤、神经网络之类的名字,然后临时起意想搞一下)。当然,想更准确判断,你可以仔细问:
既然要聚焦业务,自然下一步得详细了解:
有了这些,我们可以具体讨论,该如何建模。
2
现状描述模型
当单个指标不能全面描述现状的时候,就得一系列指标有逻辑地呈现,以全面描述现状、发现问题,这是所谓:现状描述模型。业务常见逻辑有2种:串联式、并联式。串联式模型用于描述一个前后分n个阶段的流程,需要完成一步再到下一步。从流程起点开始,到终点结束;并联式模型描述一个任务分开同时由各个线独立完成。从总目标开始,到执行任务的最小单位结束(如下图)。
因此梳理业务流程的时候,需要关注业务上下游部门、兄弟部门是如何协同的,从而构建出来。实际业务流程,可能既有串联,又有并联,比如我们常说的杜邦分析法,就是如此(如下图):
现状描述型模型的最大作用是:清晰责任,暴露问题。因为一般各个子部门,上下游部门各有自己的KPI,因此监控进度、复盘成果的时候,哪个环节掉链子一清二楚。所以在销售管理、运营管理中用的特别多。但注意:现状=/=问题,现状+标准=问题。因此只有标准单一且明确的时候才能直接看出问题来。如果标准本身很复杂,则需要更进一步的手段。
3
问题分类模型
如果判断一个指标好坏的标准只有一个,比如成本、利润,这时候是不需要模型的。大家都知道成本越低越好,利润越高越好,业务完全可以直接给判断标准。如果判断业务好坏需要2个标准,且这两个标准相关度低,这时候可以用矩阵模型来进行分类。常见的重要紧急矩阵,波士顿矩阵,质量/数量矩阵,都是这个原理(如下图)。
如果判断标准增加到3个以上,判断标准相互交叉情况太多太多,再用肉眼观察就很难判断谁好谁坏,这时候可以用DEA方法或者AHP来判断,相比之纯机器学习方法,DEA方法含义更简单直接,AHP方法有专家参与,都更容易被业务接受。
4
工作计划模型
在给定业务限制条件的情况下,经常出现最优化问题。比如给定了各个部门工时成本,求一个最优任务分配。这时候就是工作计划模型。最常见的就是解线性规划,在工作调配的时候用的非常多(如下图)。
5
未来预测模型
所有预测的基本假设,都是:未来发生的规律和过去一样,过去的场景会在未来重现。所以业务做预测的时候,常常会假设一些业务参数是固定的,然后推测未来情况。常见的做法,比如:
1、假设生命周期走势是不变的,推测未来情况
2、假设转化率/留存率是不变的,推测未来情况
3、假设投入产出比是不变的,推测未来情况
在一些发展稳定的行业里,这些假设常常很准。但注意,有三种情况下假设可能失效。
1、新业务、新场景导致无历史数据可参照。
2、突发且情况不明,导致所有转化率都异常。
3、业务运作出现明显问题,已无法按正常走势反推。
这时候要么更换预测方法,要么做足预案,提前准备后路。单纯指望预测100准,不论是业务模型还是算法模型,都会出问题。
6
什么时候用算法模型
看完以上,有同学会好奇:看起来业务模型能做很多事啊,那什么时候用算法模型呢?注意:算法模型本身的强项,就不是解决经营问题。算法模型的强项是图像识别、语义识别、复杂场景下动态规划。这些才是算法该发挥用处的地方。
就拿推荐算法举例:
1、商品有固定的搭配,比如治疗感冒就是VC+银翘,这叫:固定业务逻辑,这时候是不需要算法来推荐的,直接按业务逻辑走就好了。
2、商品无固定搭配,但业务方想推。比如保健品利润高,无论如何业务方都想推保健品,这叫:强业务关联。这时候也不需要算法来推荐,而是业务方得创造话术、广告、卖点、销售技巧,千方百计的去洗脑,特别是针对大爷大妈洗脑。
3、商品无固定搭配,且业务方无明确目标。比如天猫淘宝抖音这种,SKU数以亿计,这时候业务逻辑完全理不清,就可以上推荐算法,而且推荐算法目标常常是GMV最大,用户活跃时长最长一类。
类似的,找算法模型的应用场景。得主动回避开固定业务逻辑、强业务关联——找那些业务不知道、不清楚情况、无力加以控制的场景。比如:
1、全新业务上线,谁都说不准,没经验参考
2、预测整体走势,不考虑细节,先看基本面
3、业务无计可施,怎么做响应率就是上不去
4、考虑变量太多,用肉眼人手难以分类清楚
这时候可以大胆让业务逻辑退居二线,尝试用算法解决问题。可以名正言顺的跟业务说:这就是个黑箱。我们观察结果就好了——反正他们也没更好的办法,如果能做出成绩来,就是大功一件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18