最近小编了解到了一个的概念: FP-growth,废话就不多说了,直接把整理的FP-growth的干货分享给大家。
一、FP-growth是什么
FP-Growth(频繁模式增长)算法是由韩家炜老师在2000年提出的关联分析算法,它的分治策略为:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree),但仍保留项集关联信息。
FP-growth算法通常被用来挖掘频繁项集,即从已给的多条数据记录中,挖掘出哪些项是频繁一起出现的。这种算法算法适用于标称型数据,也就是离散型数据。其实我们经常能接触到FP-growth算法,就比如,我们在百度的搜索框内输入某个字或者词,搜索引擎就会会自动补全查询词项,往往这些词项都是与搜索词经常一同出现的。
FP-growth算法源于Apriori的,是通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但缺点是,不能发现数据之间的关联规则。与Apriori相比,FP-growth算法更为高效,因为FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集。
二、FP-Tree算法基本结构
FPTree算法的基本数据结构,包含一个一棵FP树和一个项头表,每个项通过一个结点链指向它在树中出现的位置。基本结构如下所示。需要注意的是项头表需要按照支持度递减排序,在FPTree中高支持度的节点只能是低支持度节点的祖先节点。
FP-Tree:即上面的那棵树,是把事务数据表中的各个事务数据项按照支持度排序后,把每个事务中的数据项按降序依次插入到一棵以NULL为根结点的树中,同时在每个结点处记录该结点出现的支持度。
条件模式基:包含FP-Tree中与后缀模式一起出现的前缀路径的集合。即同一个频繁项在PF树中的所有节点的祖先路径的集合。例如I3在FP树中总共出现了3次,其祖先路径分别是{I2.I1:2(频度为2)},{I2:2}和{I1:2}。这3个祖先路径的集合就是频繁项I3的条件模式基。
条件树:将条件模式基按照FP-Tree的构造原则形成的一个新的FP-Tree。比如上图中I3的条件树就是。
三、FP-growth算法
FP-growth算法挖掘频繁项集的基本过程分为两步:
(1)构建FP树。
首先构造FP树,然后利用它来挖掘频繁项集。在构造FP树时,需要对数据集扫描两边,第一遍扫描用来统计频率,第二遍扫描至考虑频繁项集。
(2)从FP树中挖掘频繁项集。
首先,获取条件模式基。条件模式基是以所查找元素项为结尾的路径集合,表示的是所查找的元素项与树根节点之间的所有内容。
其次,构建条件模式基。对于每一个频繁项,都需要创建一棵条件FP树,使用创建的条件模式基作为输入,采用相同的建树代码来构建树,相应的递归发现频繁项、发现条件模式基和另外的条件树。
四、python代码实现
class treeNode: def __init__(self, nameValue, numOccur, parentNode): self.name = nameValue self.count = numOccur self.nodeLink = None self.parent = parentNode self.children = {} def inc(self, numOccur): self.count += numOccur def disp(self, ind=1): print ' '*ind, self.name, ' ', self.count for child in self.children.values(): child.disp(ind+1) def updateHeader(nodeToTest, targetNode): while nodeToTest.nodeLink != None: nodeToTest = nodeToTest.nodeLink nodeToTest.nodeLink = targetNode def updateFPtree(items, inTree, headerTable, count): if items[0] in inTree.children: # 判断items的第一个结点是否已作为子结点 inTree.children[items[0]].inc(count) else: # 创建新的分支 inTree.children[items[0]] = treeNode(items[0], count, inTree) # 更新相应频繁项集的链表,往后添加 if headerTable[items[0]][1] == None: headerTable[items[0]][1] = inTree.children[items[0]] else: updateHeader(headerTable[items[0]][1], inTree.children[items[0]]) # 递归 if len(items) > 1: updateFPtree(items[1::], inTree.children[items[0]], headerTable, count) def createFPtree(dataSet, minSup=1): headerTable = {} for trans in dataSet: for item in trans: headerTable[item] = headerTable.get(item, 0) + dataSet[trans] for k in headerTable.keys(): if headerTable[k] < minSup: del(headerTable[k]) # 删除不满足最小支持度的元素 freqItemSet = set(headerTable.keys()) # 满足最小支持度的频繁项集 if len(freqItemSet) == 0: return None, None for k in headerTable: headerTable[k] = [headerTable[k], None] # element: [count, node] retTree = treeNode('Null Set', 1, None) for tranSet, count in dataSet.items(): # dataSet:[element, count] localD = {} for item in tranSet: if item in freqItemSet: # 过滤,只取该样本中满足最小支持度的频繁项 localD[item] = headerTable[item][0] # element : count if len(localD) > 0: # 根据全局频数从大到小对单样本排序 orderedItem = [v[0] for v in sorted(localD.items(), key=lambda p:p[1], reverse=True)] # 用过滤且排序后的样本更新树 updateFPtree(orderedItem, retTree, headerTable, count) return retTree, headerTable def loadSimpDat(): simDat = [['r','z','h','j','p'], ['z','y','x','w','v','u','t','s'], ['z'], ['r','x','n','o','s'], ['y','r','x','z','q','t','p'], ['y','z','x','e','q','s','t','m']] return simDat # 构造成 element : count 的形式 def createInitSet(dataSet): retDict={} for trans in dataSet: key = frozenset(trans) if retDict.has_key(key): retDict[frozenset(trans)] += 1 else: retDict[frozenset(trans)] = 1 return retDict # 数据集 def loadSimpDat(): simDat = [['r','z','h','j','p'], ['z','y','x','w','v','u','t','s'], ['z'], ['r','x','n','o','s'], ['y','r','x','z','q','t','p'], ['y','z','x','e','q','s','t','m']] return simDat # 构造成 element : count 的形式 def createInitSet(dataSet): retDict={} for trans in dataSet: key = frozenset(trans) if retDict.has_key(key): retDict[frozenset(trans)] += 1 else: retDict[frozenset(trans)] = 1 return retDict # 递归回溯 def ascendFPtree(leafNode, prefixPath): if leafNode.parent != None: prefixPath.append(leafNode.name) ascendFPtree(leafNode.parent, prefixPath) # 条件模式基 def findPrefixPath(basePat, myHeaderTab): treeNode = myHeaderTab[basePat][1] # basePat在FP树中的第一个结点 condPats = {} while treeNode != None: prefixPath = [] ascendFPtree(treeNode, prefixPath) # prefixPath是倒过来的,从treeNode开始到根 if len(prefixPath) > 1: condPats[frozenset(prefixPath[1:])] = treeNode.count # 关联treeNode的计数 treeNode = treeNode.nodeLink # 下一个basePat结点 return condPats def mineFPtree(inTree, headerTable, minSup, preFix, freqItemList): # 最开始的频繁项集是headerTable中的各元素 bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p:p[1])] # 根据频繁项的总频次排序 for basePat in bigL: # 对每个频繁项 newFreqSet = preFix.copy() newFreqSet.add(basePat) freqItemList.append(newFreqSet) condPattBases = findPrefixPath(basePat, headerTable) # 当前频繁项集的条件模式基 myCondTree, myHead = createFPtree(condPattBases, minSup) # 构造当前频繁项的条件FP树 if myHead != None: # print 'conditional tree for: ', newFreqSet # myCondTree.disp(1) mineFPtree(myCondTree, myHead, minSup, newFreqSet, freqItemList) # 递归挖掘条件FP树
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06