
最近小编了解到了一个的概念: FP-growth,废话就不多说了,直接把整理的FP-growth的干货分享给大家。
一、FP-growth是什么
FP-Growth(频繁模式增长)算法是由韩家炜老师在2000年提出的关联分析算法,它的分治策略为:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree),但仍保留项集关联信息。
FP-growth算法通常被用来挖掘频繁项集,即从已给的多条数据记录中,挖掘出哪些项是频繁一起出现的。这种算法算法适用于标称型数据,也就是离散型数据。其实我们经常能接触到FP-growth算法,就比如,我们在百度的搜索框内输入某个字或者词,搜索引擎就会会自动补全查询词项,往往这些词项都是与搜索词经常一同出现的。
FP-growth算法源于Apriori的,是通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但缺点是,不能发现数据之间的关联规则。与Apriori相比,FP-growth算法更为高效,因为FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集。
二、FP-Tree算法基本结构
FPTree算法的基本数据结构,包含一个一棵FP树和一个项头表,每个项通过一个结点链指向它在树中出现的位置。基本结构如下所示。需要注意的是项头表需要按照支持度递减排序,在FPTree中高支持度的节点只能是低支持度节点的祖先节点。
FP-Tree:即上面的那棵树,是把事务数据表中的各个事务数据项按照支持度排序后,把每个事务中的数据项按降序依次插入到一棵以NULL为根结点的树中,同时在每个结点处记录该结点出现的支持度。
条件模式基:包含FP-Tree中与后缀模式一起出现的前缀路径的集合。即同一个频繁项在PF树中的所有节点的祖先路径的集合。例如I3在FP树中总共出现了3次,其祖先路径分别是{I2.I1:2(频度为2)},{I2:2}和{I1:2}。这3个祖先路径的集合就是频繁项I3的条件模式基。
条件树:将条件模式基按照FP-Tree的构造原则形成的一个新的FP-Tree。比如上图中I3的条件树就是。
三、FP-growth算法
FP-growth算法挖掘频繁项集的基本过程分为两步:
(1)构建FP树。
首先构造FP树,然后利用它来挖掘频繁项集。在构造FP树时,需要对数据集扫描两边,第一遍扫描用来统计频率,第二遍扫描至考虑频繁项集。
(2)从FP树中挖掘频繁项集。
首先,获取条件模式基。条件模式基是以所查找元素项为结尾的路径集合,表示的是所查找的元素项与树根节点之间的所有内容。
其次,构建条件模式基。对于每一个频繁项,都需要创建一棵条件FP树,使用创建的条件模式基作为输入,采用相同的建树代码来构建树,相应的递归发现频繁项、发现条件模式基和另外的条件树。
四、python代码实现
class treeNode: def __init__(self, nameValue, numOccur, parentNode): self.name = nameValue self.count = numOccur self.nodeLink = None self.parent = parentNode self.children = {} def inc(self, numOccur): self.count += numOccur def disp(self, ind=1): print ' '*ind, self.name, ' ', self.count for child in self.children.values(): child.disp(ind+1) def updateHeader(nodeToTest, targetNode): while nodeToTest.nodeLink != None: nodeToTest = nodeToTest.nodeLink nodeToTest.nodeLink = targetNode def updateFPtree(items, inTree, headerTable, count): if items[0] in inTree.children: # 判断items的第一个结点是否已作为子结点 inTree.children[items[0]].inc(count) else: # 创建新的分支 inTree.children[items[0]] = treeNode(items[0], count, inTree) # 更新相应频繁项集的链表,往后添加 if headerTable[items[0]][1] == None: headerTable[items[0]][1] = inTree.children[items[0]] else: updateHeader(headerTable[items[0]][1], inTree.children[items[0]]) # 递归 if len(items) > 1: updateFPtree(items[1::], inTree.children[items[0]], headerTable, count) def createFPtree(dataSet, minSup=1): headerTable = {} for trans in dataSet: for item in trans: headerTable[item] = headerTable.get(item, 0) + dataSet[trans] for k in headerTable.keys(): if headerTable[k] < minSup: del(headerTable[k]) # 删除不满足最小支持度的元素 freqItemSet = set(headerTable.keys()) # 满足最小支持度的频繁项集 if len(freqItemSet) == 0: return None, None for k in headerTable: headerTable[k] = [headerTable[k], None] # element: [count, node] retTree = treeNode('Null Set', 1, None) for tranSet, count in dataSet.items(): # dataSet:[element, count] localD = {} for item in tranSet: if item in freqItemSet: # 过滤,只取该样本中满足最小支持度的频繁项 localD[item] = headerTable[item][0] # element : count if len(localD) > 0: # 根据全局频数从大到小对单样本排序 orderedItem = [v[0] for v in sorted(localD.items(), key=lambda p:p[1], reverse=True)] # 用过滤且排序后的样本更新树 updateFPtree(orderedItem, retTree, headerTable, count) return retTree, headerTable def loadSimpDat(): simDat = [['r','z','h','j','p'], ['z','y','x','w','v','u','t','s'], ['z'], ['r','x','n','o','s'], ['y','r','x','z','q','t','p'], ['y','z','x','e','q','s','t','m']] return simDat # 构造成 element : count 的形式 def createInitSet(dataSet): retDict={} for trans in dataSet: key = frozenset(trans) if retDict.has_key(key): retDict[frozenset(trans)] += 1 else: retDict[frozenset(trans)] = 1 return retDict # 数据集 def loadSimpDat(): simDat = [['r','z','h','j','p'], ['z','y','x','w','v','u','t','s'], ['z'], ['r','x','n','o','s'], ['y','r','x','z','q','t','p'], ['y','z','x','e','q','s','t','m']] return simDat # 构造成 element : count 的形式 def createInitSet(dataSet): retDict={} for trans in dataSet: key = frozenset(trans) if retDict.has_key(key): retDict[frozenset(trans)] += 1 else: retDict[frozenset(trans)] = 1 return retDict # 递归回溯 def ascendFPtree(leafNode, prefixPath): if leafNode.parent != None: prefixPath.append(leafNode.name) ascendFPtree(leafNode.parent, prefixPath) # 条件模式基 def findPrefixPath(basePat, myHeaderTab): treeNode = myHeaderTab[basePat][1] # basePat在FP树中的第一个结点 condPats = {} while treeNode != None: prefixPath = [] ascendFPtree(treeNode, prefixPath) # prefixPath是倒过来的,从treeNode开始到根 if len(prefixPath) > 1: condPats[frozenset(prefixPath[1:])] = treeNode.count # 关联treeNode的计数 treeNode = treeNode.nodeLink # 下一个basePat结点 return condPats def mineFPtree(inTree, headerTable, minSup, preFix, freqItemList): # 最开始的频繁项集是headerTable中的各元素 bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p:p[1])] # 根据频繁项的总频次排序 for basePat in bigL: # 对每个频繁项 newFreqSet = preFix.copy() newFreqSet.add(basePat) freqItemList.append(newFreqSet) condPattBases = findPrefixPath(basePat, headerTable) # 当前频繁项集的条件模式基 myCondTree, myHead = createFPtree(condPattBases, minSup) # 构造当前频繁项的条件FP树 if myHead != None: # print 'conditional tree for: ', newFreqSet # myCondTree.disp(1) mineFPtree(myCondTree, myHead, minSup, newFreqSet, freqItemList) # 递归挖掘条件FP树
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08