京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近小编了解到了一个的概念: FP-growth,废话就不多说了,直接把整理的FP-growth的干货分享给大家。
一、FP-growth是什么
FP-Growth(频繁模式增长)算法是由韩家炜老师在2000年提出的关联分析算法,它的分治策略为:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree),但仍保留项集关联信息。
FP-growth算法通常被用来挖掘频繁项集,即从已给的多条数据记录中,挖掘出哪些项是频繁一起出现的。这种算法算法适用于标称型数据,也就是离散型数据。其实我们经常能接触到FP-growth算法,就比如,我们在百度的搜索框内输入某个字或者词,搜索引擎就会会自动补全查询词项,往往这些词项都是与搜索词经常一同出现的。
FP-growth算法源于Apriori的,是通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集,但缺点是,不能发现数据之间的关联规则。与Apriori相比,FP-growth算法更为高效,因为FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集。
二、FP-Tree算法基本结构
FPTree算法的基本数据结构,包含一个一棵FP树和一个项头表,每个项通过一个结点链指向它在树中出现的位置。基本结构如下所示。需要注意的是项头表需要按照支持度递减排序,在FPTree中高支持度的节点只能是低支持度节点的祖先节点。
FP-Tree:即上面的那棵树,是把事务数据表中的各个事务数据项按照支持度排序后,把每个事务中的数据项按降序依次插入到一棵以NULL为根结点的树中,同时在每个结点处记录该结点出现的支持度。
条件模式基:包含FP-Tree中与后缀模式一起出现的前缀路径的集合。即同一个频繁项在PF树中的所有节点的祖先路径的集合。例如I3在FP树中总共出现了3次,其祖先路径分别是{I2.I1:2(频度为2)},{I2:2}和{I1:2}。这3个祖先路径的集合就是频繁项I3的条件模式基。
条件树:将条件模式基按照FP-Tree的构造原则形成的一个新的FP-Tree。比如上图中I3的条件树就是。
三、FP-growth算法
FP-growth算法挖掘频繁项集的基本过程分为两步:
(1)构建FP树。
首先构造FP树,然后利用它来挖掘频繁项集。在构造FP树时,需要对数据集扫描两边,第一遍扫描用来统计频率,第二遍扫描至考虑频繁项集。
(2)从FP树中挖掘频繁项集。
首先,获取条件模式基。条件模式基是以所查找元素项为结尾的路径集合,表示的是所查找的元素项与树根节点之间的所有内容。
其次,构建条件模式基。对于每一个频繁项,都需要创建一棵条件FP树,使用创建的条件模式基作为输入,采用相同的建树代码来构建树,相应的递归发现频繁项、发现条件模式基和另外的条件树。
四、python代码实现
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None
self.parent = parentNode
self.children = {}
def inc(self, numOccur):
self.count += numOccur
def disp(self, ind=1):
print ' '*ind, self.name, ' ', self.count
for child in self.children.values():
child.disp(ind+1)
def updateHeader(nodeToTest, targetNode):
while nodeToTest.nodeLink != None:
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def updateFPtree(items, inTree, headerTable, count):
if items[0] in inTree.children:
# 判断items的第一个结点是否已作为子结点
inTree.children[items[0]].inc(count)
else:
# 创建新的分支
inTree.children[items[0]] = treeNode(items[0], count, inTree)
# 更新相应频繁项集的链表,往后添加
if headerTable[items[0]][1] == None:
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
# 递归
if len(items) > 1:
updateFPtree(items[1::], inTree.children[items[0]], headerTable, count)
def createFPtree(dataSet, minSup=1):
headerTable = {}
for trans in dataSet:
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
for k in headerTable.keys():
if headerTable[k] < minSup:
del(headerTable[k]) # 删除不满足最小支持度的元素
freqItemSet = set(headerTable.keys()) # 满足最小支持度的频繁项集
if len(freqItemSet) == 0:
return None, None
for k in headerTable:
headerTable[k] = [headerTable[k], None] # element: [count, node]
retTree = treeNode('Null Set', 1, None)
for tranSet, count in dataSet.items():
# dataSet:[element, count]
localD = {}
for item in tranSet:
if item in freqItemSet: # 过滤,只取该样本中满足最小支持度的频繁项
localD[item] = headerTable[item][0] # element : count
if len(localD) > 0:
# 根据全局频数从大到小对单样本排序
orderedItem = [v[0] for v in sorted(localD.items(), key=lambda p:p[1], reverse=True)]
# 用过滤且排序后的样本更新树
updateFPtree(orderedItem, retTree, headerTable, count)
return retTree, headerTable
def loadSimpDat():
simDat = [['r','z','h','j','p'],
['z','y','x','w','v','u','t','s'],
['z'],
['r','x','n','o','s'],
['y','r','x','z','q','t','p'],
['y','z','x','e','q','s','t','m']]
return simDat
# 构造成 element : count 的形式
def createInitSet(dataSet):
retDict={}
for trans in dataSet:
key = frozenset(trans)
if retDict.has_key(key):
retDict[frozenset(trans)] += 1
else:
retDict[frozenset(trans)] = 1
return retDict
# 数据集
def loadSimpDat():
simDat = [['r','z','h','j','p'],
['z','y','x','w','v','u','t','s'],
['z'],
['r','x','n','o','s'],
['y','r','x','z','q','t','p'],
['y','z','x','e','q','s','t','m']]
return simDat
# 构造成 element : count 的形式
def createInitSet(dataSet):
retDict={}
for trans in dataSet:
key = frozenset(trans)
if retDict.has_key(key):
retDict[frozenset(trans)] += 1
else:
retDict[frozenset(trans)] = 1
return retDict
# 递归回溯
def ascendFPtree(leafNode, prefixPath):
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendFPtree(leafNode.parent, prefixPath)
# 条件模式基
def findPrefixPath(basePat, myHeaderTab):
treeNode = myHeaderTab[basePat][1] # basePat在FP树中的第一个结点
condPats = {}
while treeNode != None:
prefixPath = []
ascendFPtree(treeNode, prefixPath) # prefixPath是倒过来的,从treeNode开始到根
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count # 关联treeNode的计数
treeNode = treeNode.nodeLink # 下一个basePat结点
return condPats
def mineFPtree(inTree, headerTable, minSup, preFix, freqItemList):
# 最开始的频繁项集是headerTable中的各元素
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p:p[1])] # 根据频繁项的总频次排序
for basePat in bigL: # 对每个频繁项
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
freqItemList.append(newFreqSet)
condPattBases = findPrefixPath(basePat, headerTable) # 当前频繁项集的条件模式基
myCondTree, myHead = createFPtree(condPattBases, minSup) # 构造当前频繁项的条件FP树
if myHead != None:
# print 'conditional tree for: ', newFreqSet
# myCondTree.disp(1)
mineFPtree(myCondTree, myHead, minSup, newFreqSet, freqItemList) # 递归挖掘条件FP树
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26