最小二乘法,相信大家都不陌生,统计学中很是常见,而且其理论相对简单,用途也很广泛。今天小编就给大家具体介绍一下最小二乘法。
一、最小二乘概念
最小二乘,或者也可以叫做最小平方和,它目的就是通过最小化误差的平方和,使得拟合对象无限接近目标对象。也就意味着,最小二乘法可以用于对函数的拟合。
最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。
在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线的欧氏距离之和最小。更直观的解释:
假设有一条直线y=ax+b,要在这条直线上找到一点,距离(x0.y0)这个点的距离最短。如果用绝对值的方法寻找,也就是取min(|y−y0|+|x−x0|),由于绝对值最小为0.所以最小的情况就是x=x0或者y=y0处。
如果用平方和的方法寻找,就是取min(y−y0)2+(x−x0)2.可以看出该式是两点间距离公式,也就是距离的概念。那么最短的距离,就是点到直线的垂线。
二、最小二乘核心思想
最小二乘的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小:
三、直线拟合/多元线性回归
求导计算最小值是通用解法,但矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。
故损失函数定义为:(系数1/2是为了简化计算添加的,求迹前和求迹后值不变)
应用矩阵迹的计算公式:
四、最小二乘法的适用场景
当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,需要使用LASSO。当m=n时,用方程组求解。当m>n时,拟合方程是超定的,可以使用最小二乘法。
但是同时最小二乘也具有局限性:
1.最小二乘法需要计算(XTX)−1逆矩阵,有可能逆矩阵不存在,这样就没有办法直接用最小二乘法。
2.如果是样本特征n非常的大的情况,计算逆矩阵是一个极为耗时的工作,甚至是不可行,通常不超过10000个特征。
3.若拟合函数不是线性的,则无法使用最小二乘法,这时就需要通过一些技巧转化为线性才能使用。
五、最小二乘实现
/* 最小二乘法的实现 C++版 命令行输入数据文件 最后输入x得到预测的y值 */ #include<iostream> #include<fstream> #include<vector> using namespace std; class LeastSquare { double b0, b1; public: LeastSquare(const vector<double>& x, const vector<double>& y) { double t1 = 0, t2 = 0, t3 = 0, t4 = 0; for (int i = 0; i<x.size(); ++i) { t1 += x[i] * x[i]; t2 += x[i]; t3 += x[i] * y[i]; t4 += y[i]; } b0 = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2); // 求得 B0 b1 = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2); // 求得 B1 } double getY(const double x) const { return b0+b1*x; } void print() const { if (b1>=0) cout << "y = " << b0 << "+" << b1 << 'x' << "\n"; else cout << "y = " << b0 << "" << b1 << 'x' << "\n"; } }; int main(int argc, char *argv[]) { if (argc != 2) { cout << " data.txt don't exit " << endl; return -1; } else { vector<double> x; vector<double> y; int count = 1; ifstream in(argv[1]); for (double d; in >> d; count++) if (count % 2 == 1) x.push_back(d); else y.push_back(d); LeastSquare ls(x, y); ls.print(); cout << "Input x:\n"; double x0; while (cin >> x0) { cout << "y = " << ls.getY(x0) << endl; cout << "Input x:\n"; } } int endline; cin >> endline; }
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20