最小二乘法,相信大家都不陌生,统计学中很是常见,而且其理论相对简单,用途也很广泛。今天小编就给大家具体介绍一下最小二乘法。
一、最小二乘概念
最小二乘,或者也可以叫做最小平方和,它目的就是通过最小化误差的平方和,使得拟合对象无限接近目标对象。也就意味着,最小二乘法可以用于对函数的拟合。
最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。
在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线的欧氏距离之和最小。更直观的解释:
假设有一条直线y=ax+b,要在这条直线上找到一点,距离(x0.y0)这个点的距离最短。如果用绝对值的方法寻找,也就是取min(|y−y0|+|x−x0|),由于绝对值最小为0.所以最小的情况就是x=x0或者y=y0处。
如果用平方和的方法寻找,就是取min(y−y0)2+(x−x0)2.可以看出该式是两点间距离公式,也就是距离的概念。那么最短的距离,就是点到直线的垂线。
二、最小二乘核心思想
最小二乘的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小:
三、直线拟合/多元线性回归
求导计算最小值是通用解法,但矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。
故损失函数定义为:(系数1/2是为了简化计算添加的,求迹前和求迹后值不变)
应用矩阵迹的计算公式:
四、最小二乘法的适用场景
当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,需要使用LASSO。当m=n时,用方程组求解。当m>n时,拟合方程是超定的,可以使用最小二乘法。
但是同时最小二乘也具有局限性:
1.最小二乘法需要计算(XTX)−1逆矩阵,有可能逆矩阵不存在,这样就没有办法直接用最小二乘法。
2.如果是样本特征n非常的大的情况,计算逆矩阵是一个极为耗时的工作,甚至是不可行,通常不超过10000个特征。
3.若拟合函数不是线性的,则无法使用最小二乘法,这时就需要通过一些技巧转化为线性才能使用。
五、最小二乘实现
/* 最小二乘法的实现 C++版 命令行输入数据文件 最后输入x得到预测的y值 */ #include<iostream> #include<fstream> #include<vector> using namespace std; class LeastSquare { double b0, b1; public: LeastSquare(const vector<double>& x, const vector<double>& y) { double t1 = 0, t2 = 0, t3 = 0, t4 = 0; for (int i = 0; i<x.size(); ++i) { t1 += x[i] * x[i]; t2 += x[i]; t3 += x[i] * y[i]; t4 += y[i]; } b0 = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2); // 求得 B0 b1 = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2); // 求得 B1 } double getY(const double x) const { return b0+b1*x; } void print() const { if (b1>=0) cout << "y = " << b0 << "+" << b1 << 'x' << "\n"; else cout << "y = " << b0 << "" << b1 << 'x' << "\n"; } }; int main(int argc, char *argv[]) { if (argc != 2) { cout << " data.txt don't exit " << endl; return -1; } else { vector<double> x; vector<double> y; int count = 1; ifstream in(argv[1]); for (double d; in >> d; count++) if (count % 2 == 1) x.push_back(d); else y.push_back(d); LeastSquare ls(x, y); ls.print(); cout << "Input x:\n"; double x0; while (cin >> x0) { cout << "y = " << ls.getY(x0) << endl; cout << "Input x:\n"; } } int endline; cin >> endline; }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29