散点图大家都能绘制,平常工作汇报有时也会用散点图让报表看起来更美观。但是,散点图并不是为了展示数据,而是需要数据分析,并利用数据分析的结果推动业务的增长。小编今天跟大家分享的这篇文章就是教大家如何用散点图进行数据分析的,希望对大家有所帮助。
文章来源:林骥微信公众号
作者:林骥
你好,我是林骥。
散点图的用途有很多,我认为它的核心价值,在于应用相关思维,发现变量之间的关系。
散点图就像一扇窗,打开它,并仔细观察,能让我们看见更多有价值的信息。
比如说,假设表格中有 10000 个客户年龄和消费金额的数据:
我们可以计算每一个年龄对应的人均消费金额,比如说,所有 20 岁客户的平均消费金额约为 1383.69 元,然后我们可以画出一张散点图:
从图中可以看出,客户的年龄与人均消费金额有很强的相关性,其中应用了线性回归算法,得到一条拟合的直线,并用公式表示出来, 接近于 1 ,代表算法拟合的效果很好。
接下来,我们看看具体实现的步骤。
首先,导入所需的库,并设置中文字体和定义颜色等。
# 导入所需的库 import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline # 正常显示中文标签 mpl.rcParams['font.sans-serif'] = ['SimHei'] # 自动适应布局 mpl.rcParams.update({'figure.autolayout': True}) # 正常显示负号 mpl.rcParams['axes.unicode_minus'] = False # 禁用科学计数法 pd.set_option('display.float_format', lambda x: '%.2f' % x) # 定义颜色,主色:蓝色,辅助色:灰色,互补色:橙色 c = {'蓝色':'#00589F', '深蓝色':'#003867', '浅蓝色':'#5D9BCF', '灰色':'#999999', '深灰色':'#666666', '浅灰色':'#CCCCCC', '橙色':'#F68F00', '深橙色':'#A05D00', '浅橙色':'#FBC171'}
其次,从 Excel 文件中读取数据,并调用 sklearn 中的算法,得到拟合的直线和评分结果。
# 数据源路径 filepath='./data/客户年龄和消费金额.xlsx' # 读取 Excel文件 df = pd.read_excel(filepath, index_col='客户编号') # 定义画图用的数据:年龄和人均消费金额 df_group = df.groupby('年龄').mean() x = np.array(df_group.index).reshape(-1, 1) y = np.array(df_group.values) # 用管道的方式调用算法,以便把线性回归扩展为多项式回归 poly_reg = Pipeline([ ('ploy', PolynomialFeatures(degree=1)), ('lin_reg', LinearRegression()) ]) # 拟合 poly_reg.fit(x, y) # 斜率 coef = poly_reg.steps[1][1].coef_ # 截距 intercept = poly_reg.steps[1][1].intercept_ # 评分 score = poly_reg.score(x, y)
接下来,开始用「面向对象」的方法进行画图。
# 使用「面向对象」的方法画图,定义图片的大小 fig, ax = plt.subplots(figsize=(8, 6)) # 设置标题 ax.set_title('\n客户每年长一岁,人均消费金额增加' + '%.2f' % coef[0][1] + '元\n', loc='left', size=26, color=c['深灰色']) # 画气泡图 ax.scatter(x, y, color=c['蓝色'], marker='.', s=100, zorder=1) # # 绘制预测线 y2 = poly_reg.predict(x) ax.plot(x, y2, '-', c=c['橙色'], zorder=2) # 隐藏边框 ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) # 隐藏刻度线 ax.tick_params(axis='x', which='major', length=0) ax.tick_params(axis='y', which='major', length=0) ax.set_ylim(15, 65) ax.set_ylim(1000, 5000) # 设置坐标标签字体大小和颜色 ax.tick_params(labelsize=16, colors=c['深灰色']) ax.text(ax.get_xlim()[0]-6, ax.get_ylim()[1], '人\n均\n消\n费\n金\n额', va='top', fontsize=16, color=c['深灰色']) # 设置坐标轴的标题 ax.text(ax.get_xlim()[0]+1, ax.get_ylim()[0]-300, '年龄', ha='left', va='top', fontsize=16, color=c['深灰色']) # 预测 55 岁的人均消费金额 predict = poly_reg.predict([[55]]) # 标注公式 formula = r'$\mathcal{Y} = ' + '%.2f' % coef[0][1] + '\mathcal{X}' + '%+.2f$' % intercept[0] + '\n' + r'$\mathcal{R}^2 = ' + '%.5f$' % score ax.annotate(formula, xy=(55, predict), xytext=(55, predict+500), ha='center', fontsize=12, color=c['深灰色'], arrowprops=dict(arrowstyle='->', color=c['橙色'])) plt.show()
你可以前往 https://github.com/linjiwx/mp 下载数据文件和完整代码。
当业务指标很多的时候,应该挑选什么指标来进行分析,这件事很考验分析者的功力,往往需要对业务有比较深刻的理解。
为什么很多人精通各种工具技术,手上也有很多各种各样的数据,却没有做出让领导满意的图表?
好的图表,就像是给近视的人戴了一副眼镜,让读者以更清楚的方式去理解数据。
好的图表,就像是神奇的催化剂,加快了从数据到决策的过程,让决策者更加快速地掌握有助于做出决策的信息。
好的图表,能把复杂的问题简单化,帮我们更精准地理解业务的现状,甚至预测未来。
我们应该记住,无论多么漂亮的图表,如果不能从中获取有价值的信息,那么也是一张没有「灵魂」的图表。
很多时候,我们面对的问题,并不是没有数据,而是数据太多,却不知道怎么用。
熟悉数据分析的思维,能帮我们找到更重要的数据,排除过多杂乱数据的干扰。
如果把数据分析比作医生看病的过程,那么可以分为以下 4 个阶段:
(1)描述:检查身体,描述指标值是否正常。
(2)诊断:询问病情,找到疾病的产生原因。
(3)预测:分析病情,预测病情的发展趋势。
(4)指导:开出药方,提出有效的治疗建议。
我们要尽可能地理解业务并提供价值,从数据的加工者,转变成故事的讲述者,甚至是问题的解决者。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20