相信大家最近都快被python烦死了,朋友圈,公众号推文,小视频上都是关于python的广告,什么面试录取会用python的人,刚来的同事因为会用python升职加薪啦等等。但是小编觉得,python就是一款工具,最大的特点是它能帮我们解决那些重复性工作,解放我们双手。下面,小编给大家分享的这篇文章就是关于python办公自动化的,希望能对大家有所帮助。
以下文章来源: 早起Python
作者:陈熹
大家好,又到了Python办公自动化系列。
今天分享一个真实的办公自动化需求,大家一定要仔细阅读需求说明,在理解需求之后即可体会Python的强大!
首先我们来看下今天的需求,有一份档案记录总表的Excel工作簿, 每天会根据当天日期建立新表,每天的表格内包含所有档案信息,同时也有可能会添加新的档案名。同个年度的总表在年末可能会有两、三百个工作表,同时每个表中可能也存在千余份档案信息。表格形式如下(为了直观呈现本例以7个工作表和十余份档案的形式呈现)
需要完成的操作:为了方便审查特定档案信息,需要给出档案名后生成一份新表,该表包含指定档案在所有日期(即所有工作表)中的记录。最终结果如下(以档案x003为例):
也就是老板说:给我把这几百个表格中所有包含档案x003的相关数据全部找到并整理个新的表格给我!
正式写代码前可以把需求分析清楚,将复杂问题简单化。
说白了,这个需求要求把所有日期工作表中的特定行都提取出来整合成一个新表。那么我们可以遍历每一张表,然后遍历第一列(名称列,也可以看作A列)每一个有数据的单元格,如果单元格中的文字为我们需要的档案名,就把这一行提取出来放到新的表格中,进一步梳理步骤为
建立一个新的EXCEL工作簿
新表的表头和档案记录Excel中的一样,也是名称、配置、提交日期等
遍历档案记录Excel的每一张工作表sheet,再遍历第一列每一个有数据的单元格,对内容进行判断
找到符合条件的单元格后获取行号,根据行号将当前表中的特定行提取出来,并将行追加新创建的表中
分析清楚就可以着手写代码了
首先导入需要的库本例中涉及旧表的打开和新表的创建,因此需要从openpyxl导入load_workbook和Workbook(如果是ppt和word用到的模块就更智能了,一个方法就能搞定)
from openpyxl import load_workbook, Workbook
接着导入旧表及创建新表
# 从桌面上获取总表 filepath = r'C:\Users\chenx\Desktop\台账.xlsm' # 根据实际情况进行修改 workbook = load_workbook(filepath) # 创建新的Excel工作簿获取到工作表 new_workbook = Workbook() new_sheet = new_workbook.active # 给新表写入表头 new_headers = ['名称', '配置', '提交日期', '受限操作', '操作时间', '状态', '存储位置'] new_sheet.append(new_headers)
现在是核心步骤:多次遍历,可以用workbook.sheetnames获取工作簿所有工作表名称的列表,然后遍历即可
for i in workbook.sheetnames: sheet = workbook[i] # 获取档案名称所在列 names = sheet['A']
按照前面的分析,需要遍历名称列,判断每一个单元格的值是不是需要的档案名。这里应注意,如果已经循环到需要的单元格,就可以停止循环了,但一定要把符合单元格的行号传递给一个变量做记录,不然一旦break出循环就没有记忆了
flag = 0 for cell in names: if cell.value == keyword: # 这里的keyword就是档案名,可以以 档案x003 为例 flag = cell.row break
获得到符合条件的行号后用sheet[flag]就可以拿到符合行了。openpyxl不支持旧表的一整行写入新表,因此应对策略就是将这一行的所有单元格具体值组装成一个列表,用sheet.append(列表)的方法写入新表,遍历部分的完整代码如下:
for i in workbook.sheetnames: sheet = workbook[i] names = sheet['A'] flag = 0 for cell in names: if cell.value == keyword: flag = cell.row break if flag: # 如果flag没有被修改则不需要顺序进行下列代码 data_lst = [] for cell in sheet[flag]: # 这里加上一个对内容的判断,是让无内容的行直接放空,而不是写入一个 none if cell.value: data_lst.append(str(cell.value)) else: data_lst.append(' ') new_sheet.append(data_lst)
最后记得保存
new_workbook.save(r'C:\Users\chenx\Desktop\台账查询.xlsx')
这是经过一定改编的真实案例,可见Python自动化办公确实能够帮助我们解放自己的双手,不过在写自动化脚本之前也要先拆分任务,明确思路再进行,如果对本文的代码和数据感兴趣可以在后台回复自动化获取。最后还是希望大家能够理解Python办公自动化的一个核心就是批量操作-解放双手,让复杂的工作自动化!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20