今天给大家推荐一篇高大上的文章:基于OpenCV实现海岸线变化检测。OpenCV大家都知道,一款开源的计算机视觉库,平常大家看到的都是OpenCV人脸识别,图像处理之类的,今天跟小编一起来看他如何实现海岸线变化检测的吧。
文章来源: 小白学视觉
作者:努比
介绍
海岸是一个动态系统,其中因侵蚀现象导致的海岸线后退、或是由众多因素如气象,地质,生物和人类活动所导致线前进的是常见现象。
在海洋磨损作用大于沉积物的情况下,有明显的海岸侵蚀,我们称之为地球表面的崩解和破坏。
资料来源:弗林德斯大学(CC0)
本文的目标
在本文中,我们将对Landsat 8平台上的OLI(陆地成像仪)传感器获取的卫星图像使用Canny Edge Detection算法。
通过这种方法,我们将能够可视化的估计特定欧洲地区遭受强腐蚀作用的海岸线随时间的推移:霍德内斯海岸。
一下是处理流程:
处理流程
在开始之前让我们先介绍一下OLI数据...
0.关于Landsat OLI数据的简要介绍
Landsat 8是一个轨道平台,安装在称为OLI(陆地成像仪)的11波段多光谱传感器上。
具体来说,在本文中,我们将仅使用分辨率为30米(即前7个)的波段。
美国地质调查局陆地卫星8号
该数据可以免费下载,注册后,获得USGS:https://earthexplorer.usgs.gov/。
而且,通常我摸并不使用入射太阳光作为原始数据,而是使用反射率,即从地球表面反射的太阳光量[0-1]。
1.包导入
在各种常见的包,我们将使用rasterio处理图像,利用OpenCV中的Canny 算法和Scikit-Learn分割图像。
from glob import glob import numpy as np import rasterio import json, re, itertools, os import matplotlib.pyplot as plt import cv2 as cv from sklearn import preprocessing from sklearn.cluster import KMeans
2.数据导入
让我们定义一个变量,该变量告诉我们要保留的波段数以及在JSON中输入的辅助数据:
N_OPTICS_BANDS = 7 with open("bands.json","r") as bandsJson: bandsCharacteristics = json.load(bandsJson)
这个Json是Landsat OLI成像仪的信息集合。类似于一种说明手册:
# bands.json [{'id': '1', 'name': 'Coastal aerosol', 'span': '0.43-0.45', 'resolution': '30'}, {'id': '2', 'name': 'Blue', 'span': '0.45-0.51', 'resolution': '30'}, {'id': '3', 'name': 'Green', 'span': '0.53-0.59', 'resolution': '30'}, {'id': '4', 'name': 'Red', 'span': '0.64-0.67', 'resolution': '30'}, {'id': '5', 'name': 'NIR', 'span': '0.85-0.88', 'resolution': '30'}, {'id': '6', 'name': 'SWIR 1', 'span': '1.57-1.65', 'resolution': '30'}, {'id': '7', 'name': 'SWIR 2', 'span': '2.11-2.29', 'resolution': '30'}, {'id': '8', 'name': 'Panchromatic', 'span': '0.50-0.68', 'resolution': '15'}, {'id': '9', 'name': 'Cirrus', 'span': '1-36-1.38', 'resolution': '30'}, {'id': '10', 'name': 'TIRS 1', 'span': '10.6-11.9', 'resolution': '100'}, {'id': '11', 'name': 'TIRS 2', 'span': '11.50-12.51', 'resolution': '100'}]
bands.json文件包含有关我们将要使用的频段的所有有用信息。
注意,我们将仅使用分辨率为30 m的频段,因此仅使用前7个频段。如果您愿意使用较低的分辨率(100m),则也可以嵌入TIRS 1和TIRS 2频段。
正如上面几行已经提到的那样,我们将使用从Landsat-8 OLI上获取两组不同的数据:
• 2014/02/01
• 2019/07/25
为了简化两次采集的所需操作,我们将定义一个Acquisition()类,其中将封装所有必要的函数。
在执行代码期间,我们能够执行一些基础支持性的功能,例如:
• 在指定路径中搜索GeoTIFF;
• 加载采购;
• 购置登记 (调整);
• 收购子集
class Acquisition: def __init__(self, path, ext, nOpticsBands): self.nOpticsBands = nOpticsBands self._getGeoTIFFs(path, ext) self.images = self._loadAcquisition() def _getGeoTIFFs(self, path, ext): # It searches for GeoTIFF files within the folder. print("Searching for '%s' files in %s" % (ext, path)) self.fileList = glob(os.path.join(path,"*."+ext)) self.opticsFileList = [ [list(filter(re.compile(r"band%s\."%a).search, self.fileList))[0] for a in range(1,self.nOpticsBands+1)] print("Found %d 'tif' files" % len(self.opticsFileList)) def _loadAcquisition(self): # It finally reads and loads selected images into arrays. print("Loading images") self.loads = [rasterio.open(bandPath) for bandPath in self.opticsFileList] images = [load.read()[0] for load in self.loads] print("Done") return images def subsetImages(self, w1, w2, h1, h2, leftBound): # This function subsets images according the defined sizes. print("Subsetting images (%s:%s, %s:%s)" % (w1, w2, h1, h2)) cols = (self.loads[0].bounds.left - leftBound)/30 registered = [np.insert(band,np.repeat(0,cols),0,axis=1) for band in self.images] subset = [band[w1:w2,h1:h2] for band in registered] print("Done") return subset
好的,让我们现在开始启动整个代码:
DATES = ["2014-02-01", "2019-07-25"] acquisitionsObjects = [] for date in DATES: singleAcquisitionObject = Acquisition("Data/"+date, "tif", N_OPTICS_BANDS) acquisitionsObjects.append( singleAcquisitionObject )
运行结果如下:
Searching for 'tif' files in Data/2014-02-01
Found 7 'tif' files
Loading images
Done
Searching for 'tif' files in Data/2019-07-25
Found 7 'tif' files
Loading images
Done
现在我们已加载了14张OLI图像(在7个波段中各采集2个)。
2.1 子集多光谱立方体
在这个阶段中,先对两个多光谱立方体进行“对齐”(或正式注册),再切出不感兴趣的部分。
我们可以使用ImageImages()函数“剪切”不需要的数据。
因此,我们定义AOI(感兴趣的区域),并使用Acquisition()类中的subsetImages()函数进行设置:
W1, W2 = 950, 2300 H1, H2 = 4500, 5300 subAcquisitions = [acquisition.subsetImages(W1, W2, H1, H2, 552285.0) for acquisition in acquisitionsObjects].
完成!
3.数据探索
3.1可视化多光谱立方体
让我们尝试查看2019/07/25收购的所有范围。出于纯粹的美学原因,在绘制图像之前,让我们使用
StandardScaler()对图像进行标准化。
axs = range(N_OPTICS_BANDS) fig, axs = plt.subplots(2, 4, figsize=(15,12)) axs = list(itertools.chain.from_iterable(axs)) for b in range(N_OPTICS_BANDS): id_ = bandsCharacteristics[b]["id"] name_ = bandsCharacteristics[b]["name"] span_ = bandsCharacteristics[b]["span"] resolution_ = bandsCharacteristics[b]["resolution"] title = "%s - %s\n%s (%s m)" % (id_, name_, span_, resolution_) axs[b].imshow(preprocessing.StandardScaler().fit_transform(subAcquisitions[1][b]), cmap="Greys_r") axs[b].set_title(title); axs[b].set_xticklabels([]); axs[b].set_yticklabels([]) plt.axis("off"); plt.tight_layout(w_pad=-10); plt.show()
以下是运行结果。
这些图中,有些波段比其他波段更亮。这很正常。
3.2可视化复合RGB中的多光谱立方体
现在,让我们尝试可视化使用波段4(红色),3(绿色)和2(蓝色)获得的RGB复合图像中的两次采集。
定义BIAS和GAIN 仅是为了获得更好的效果。
BIAS = 1.5 GAIN = [2.3,2.4,1.4] r1 = (subAcquisitions[0][3] - subAcquisitions[0][3].min()) / (subAcquisitions[0][3].max()-subAcquisitions[0][3].min()) * GAIN[0] * BIAS g1 = (subAcquisitions[0][2] - subAcquisitions[0][2].min()) / (subAcquisitions[0][2].max()-subAcquisitions[0][2].min()) * GAIN[1] * BIAS b1 = (subAcquisitions[0][1] - subAcquisitions[0][1].min()) / (subAcquisitions[0][1].max()-subAcquisitions[0][1].min()) * GAIN[2] * BIAS r2 = (subAcquisitions[1][3] - subAcquisitions[1][3].min()) / (subAcquisitions[1][3].max()-subAcquisitions[1][3].min()) * GAIN[0] * BIAS g2 = (subAcquisitions[1][2] - subAcquisitions[1][2].min()) / (subAcquisitions[1][2].max()-subAcquisitions[1][2].min()) * GAIN[1] * BIAS b2 = (subAcquisitions[1][1] - subAcquisitions[1][1].min()) / (subAcquisitions[1][1].max()-subAcquisitions[1][1].min()) * GAIN[2] * BIAS rgbImage1, rgbImage2 = np.zeros((W2-W1,H2-H1,3)), np.zeros((W2-W1,H2-H1,3)) rgbImage1[:,:,0], rgbImage2[:,:,0] = r1, r2 rgbImage1[:,:,1], rgbImage2[:,:,1] = g1, g2 rgbImage1[:,:,2], rgbImage2[:,:,2] = b1, b2 fig, (ax1,ax2) = plt.subplots(1,2,figsize=(16,12)) ax1.imshow(rgbImage1); ax2.imshow(rgbImage2) ax1.set_title("RGB\n(Bands 4-3-2)\n2014-02-01"); ax2.set_title("RGB\n(Bands 4-3-2)\n2019-07-25") plt.show()
结果如下图所示!有趣的是,这两次获取的反射率完全的不同。
好的,继续进行海岸线检测。
4.自动化海岸线检测
在本段中,我们将使用Canny的算法执行边缘检测。
在进行实际检测之前,有必要准备数据集,尝试通过聚类算法对数据集进行分割以区分海洋和陆地。
4.1数据准备
在此阶段,我们将重塑两个多光谱立方体以进行聚类操作。
4.2用K均值进行图像分割
我们通过k均值对这两次采集进行细分(使用自己喜欢的模型即可)。
4.3细分结果
这是确定的代表新兴土地和水体的两个集群。
4.4Canny边缘检测算法
Canny的传统键技术分为以下几个阶段:
1. 高斯滤波器通过卷积降低噪声;
2. 四个方向(水平,垂直和2个倾斜)的图像梯度计算;
3. 梯度局部最大值的提取;
4. 带有滞后的阈值,用于边缘提取。
让我们开始,将聚类结果转换为图像,然后通过具有15x15内核的高斯滤波器降低噪声:
clusteredImages = [clusterLabels.reshape(subAcquisitions[0][0].shape).astype("uint8") for clusterLabels in clusters] blurredImages = [cv.GaussianBlur(clusteredImage, (15,15), 0) for clusteredImage in clusteredImages] fig, (ax1, ax2) = plt.subplots(1,2,figsize=(16,13)) ax1.imshow(blurredImages[0]) ax1.set_title("2014-02-01\nGaussian Blurred Image") ax2.imshow(blurredImages[1]) ax2.set_title("2019-07-25\nGaussian Blurred Image") plt.show()
在图像稍微模糊之后,我们可以使用OpenCV Canny()模块:
rawEdges = [cv.Canny(blurredImage, 2, 5).astype("float").reshape(clusteredImages[0].shape) for blurredImage in blurredImages] edges = [] for edge in rawEdges: edge[edge == 0] = np.nan edges.append(edge)
在单行代码中,我们获得了梯度,提取了局部最大值,然后对每次采集都应用了带有滞后的阈值。
注意:我们可以使用不同参数Canny()来探索处理结果。
4.5结果
plt.figure(figsize=(16,30)) plt.imshow(rgbImage2) plt.imshow(edges[0], cmap = 'Set3_r') plt.imshow(edges[1], cmap = 'Set1') plt.title('CoastLine') plt.show()
以下是一些详细信息:
5结论
从结果中可以看到,Canny的算法在其原始管道中运行良好,但其性能通常取决于所涉及的数据。
实际上,所使用的聚类算法使我们能够对多光谱立方体进行细分。并行使用多个聚类模型可以总体上改善结果。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16