
matplotlib是我们经常会用到的一款python绘图库,操作简单,几行代码就能很轻松地画一些或简单或复杂地图形,线图、直方图、功率谱、条形图、错误图、散点图以及费笛卡尔坐标图等都不在话下。今天小编就具体给大家介绍一下matplotlib绘图教程。
一、首先来了解一下matplotlib
1.matplotlib是基于python语言的开源数据绘图包。matplotlib的对象体系严谨而有趣,为我们提供了巨大的发挥空间。在熟悉了核心对象之后,我们可以轻易的定制图像。matplotlib使用numpy进行数组运算,并调用一系列其他的python库来实现硬件交互。
2.matplotlib安装
pip install matplotlib
3.Matplotlib导入
import matplotlib.pyplot as plt#为方便简介为plt
import numpy as np#画图过程中会使用numpy
import pandas as pd#画图过程中会使用pandas
二、matplotlib绘图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(figsize=(10,8)) #建立一个大小为10*8的画板 ax1 = fig.add_subplot(331) #在画板上添加3*3个画布,位置是第1个 ax2 = fig.add_subplot(3,3,2) ax3 = fig.add_subplot(3,3,3) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(3,3,5) ax6 = fig.add_subplot(3,3,6) ax7 = fig.add_subplot(3,3,7) ax8 = fig.add_subplot(3,3,8) ax9 = fig.add_subplot(3,3,9) ax1.plot(np.random.randn(10)) _ = ax2.scatter(np.random.randn(10),np.arange(10),color='r') #作散点图 ax3.hist(np.random.randn(20),bins=10,alpha=0.3) #作柱形图 ax4.bar(np.arange(10),np.random.randn(10)) #做直方图 ax5.pie(np.random.randint(1,15,5),explode=[0,0,0.2,0,0]) #作饼形图 x = np.arange(10) y = np.random.randn(10) ax6.plot(x,y,color='green') ax6.bar(x,y,color='k') data = DataFrame(np.random.randn(1000,10), columns=['one','two','three','four','five','six','seven','eight','nine','ten']) data2 = DataFrame(np.random.randint(0,20,(10,2)),columns=['a','b']) data.plot(x='one',y='two',kind='scatter',ax=ax7) #针对DataFrame的一些作图 data2.plot(x='a',y='b',kind='bar',ax=ax8,color='red',legend=False) data2.plot(x='a',y='b',kind='barh',color='m',ax=ax9) #plt.tight_layout() #避免出现叠影 #plt.show()
2.蜡烛图
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.finance as mpf from pandas import Series, DataFrame from matplotlib.pylab import date2num %matplotlib inline plt.rcParams['figure.autolayout'] = True plt.rcParams['figure.figsize'] = 25,6 plt.rcParams['grid.alpha'] = .4 plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = ['SimHei'] fig, ax = plt.subplots(1,1,figsize=(12,5)) mpf.candlestick_ohlc(ax=ax,quotes=data2.values[::3],width=.002,colorup='red',colordown='green') plt.xticks(data2.date[::25],data.date.map(lambda x:x[:5])[::25],rotation=0) ax.twiny().plot(data3.Open) plt.tight_layout();
3.热图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline df = DataFrame(np.random.randn(10,10)) fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) axim = ax.imshow(df.values,interpolation='nearest')#cmap=plt.cm.gray_r, #cmap用来显示颜色,可以另行设置 plt.colorbar(axim) plt.show()
以上就是小编今天跟大家分享的matplotlib绘图的一些方法啦,希望对与大家使用matplotlib有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30