matplotlib是我们经常会用到的一款python绘图库,操作简单,几行代码就能很轻松地画一些或简单或复杂地图形,线图、直方图、功率谱、条形图、错误图、散点图以及费笛卡尔坐标图等都不在话下。今天小编就具体给大家介绍一下matplotlib绘图教程。
一、首先来了解一下matplotlib
1.matplotlib是基于python语言的开源数据绘图包。matplotlib的对象体系严谨而有趣,为我们提供了巨大的发挥空间。在熟悉了核心对象之后,我们可以轻易的定制图像。matplotlib使用numpy进行数组运算,并调用一系列其他的python库来实现硬件交互。
2.matplotlib安装
pip install matplotlib
3.Matplotlib导入
import matplotlib.pyplot as plt#为方便简介为plt
import numpy as np#画图过程中会使用numpy
import pandas as pd#画图过程中会使用pandas
二、matplotlib绘图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(figsize=(10,8)) #建立一个大小为10*8的画板 ax1 = fig.add_subplot(331) #在画板上添加3*3个画布,位置是第1个 ax2 = fig.add_subplot(3,3,2) ax3 = fig.add_subplot(3,3,3) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(3,3,5) ax6 = fig.add_subplot(3,3,6) ax7 = fig.add_subplot(3,3,7) ax8 = fig.add_subplot(3,3,8) ax9 = fig.add_subplot(3,3,9) ax1.plot(np.random.randn(10)) _ = ax2.scatter(np.random.randn(10),np.arange(10),color='r') #作散点图 ax3.hist(np.random.randn(20),bins=10,alpha=0.3) #作柱形图 ax4.bar(np.arange(10),np.random.randn(10)) #做直方图 ax5.pie(np.random.randint(1,15,5),explode=[0,0,0.2,0,0]) #作饼形图 x = np.arange(10) y = np.random.randn(10) ax6.plot(x,y,color='green') ax6.bar(x,y,color='k') data = DataFrame(np.random.randn(1000,10), columns=['one','two','three','four','five','six','seven','eight','nine','ten']) data2 = DataFrame(np.random.randint(0,20,(10,2)),columns=['a','b']) data.plot(x='one',y='two',kind='scatter',ax=ax7) #针对DataFrame的一些作图 data2.plot(x='a',y='b',kind='bar',ax=ax8,color='red',legend=False) data2.plot(x='a',y='b',kind='barh',color='m',ax=ax9) #plt.tight_layout() #避免出现叠影 #plt.show()
2.蜡烛图
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.finance as mpf from pandas import Series, DataFrame from matplotlib.pylab import date2num %matplotlib inline plt.rcParams['figure.autolayout'] = True plt.rcParams['figure.figsize'] = 25,6 plt.rcParams['grid.alpha'] = .4 plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = ['SimHei'] fig, ax = plt.subplots(1,1,figsize=(12,5)) mpf.candlestick_ohlc(ax=ax,quotes=data2.values[::3],width=.002,colorup='red',colordown='green') plt.xticks(data2.date[::25],data.date.map(lambda x:x[:5])[::25],rotation=0) ax.twiny().plot(data3.Open) plt.tight_layout();
3.热图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline df = DataFrame(np.random.randn(10,10)) fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) axim = ax.imshow(df.values,interpolation='nearest')#cmap=plt.cm.gray_r, #cmap用来显示颜色,可以另行设置 plt.colorbar(axim) plt.show()
以上就是小编今天跟大家分享的matplotlib绘图的一些方法啦,希望对与大家使用matplotlib有所帮助。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16